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Sander Mücher (PhD) is senior researcher Remote Sensing and Geo-Information at Wageningen

Environmental Research (WENR), within the team Earth Observation and Environmental

Informatics. He has been active for more than 25 years at WENR in the field of remote sensing

and the application domains of biodiversity, agriculture, and environmental monitoring. In 1997

he was already co-ordinator of the EU-FP4 project PELCOM which aimed at European land use

monitoring with satellites for environmental applications. Together with Wageningen University,

he established, in 2012, a ROC-certified unmanned aerial remote-sensing facility (WUR-UARSF)

with a wide range of national and international applications in the field of agriculture and

nature (http://www.wur.eu/uarsf). He is now involved in many European remote sensing

activities, particularly vegetation mapping and monitoring at different scales for agriculture and

biodiversity. He has been involved in many European projects such as BIOPRESS, BIOHAB,

EBONE, ECOCHANGE, SIGMA, and BIO-SOS. Within the current Interrreg project SPECTORS, he is

responsible for developing UAS services for nature monitoring, and in the H2020 project GENTORE

he is aiming at the exploitation of drones and artificial intelligence to aid in the identification and

characterization of animals. Next to these international activities, he is also involved in many

national projects in the field of hyperspectral and LiDAR-based UAS applications for biodiversity

and phenotyping. The integration of remote sensing and in-situ information for monitoring and

modelling plays an important role in all his studies.

vii





drones

Editorial

Editorial of Special Issue “Drones for Biodiversity
Conservation and Ecological Monitoring”

Ricardo Díaz-Delgado 1,* and Sander Mücher 2

1 Remote Sensing and GIS Laboratory (LAST-EBD). Estación Biologica de Doñana. CSIC. Avda. Américo
Vespucio 26, 41092 Sevilla, Spain

2 Wageningen Environmental Research (WENR), Wageningen University and Research, Building 101,
Droevendaalsesteeg 3, P.O Box 47, 6700 AA Wageningen, The Netherlands; sander.mucher@wur.nl

* Correspondence: rdiaz@ebd.csic.es; Tel.: +34-954-232340

Received: 2 June 2019; Accepted: 3 June 2019; Published: 7 June 2019

Abstract: Unmanned Aerial Vehicles (UAV) have already become an affordable and cost-efficient tool
to quickly map a targeted area for many emerging applications in the arena of Ecological Monitoring
and Biodiversity Conservation. Managers, owners, companies and scientists are using professional
drones equipped with high-resolution visible, multispectral or thermal cameras to assess the state
of ecosystems, the effect of disturbances, or the dynamics and changes of biological communities
inter alia. It is now a defining time to assess the use of drones for these types of applications over
natural areas and protected areas. UAV missions are increasing but most of them are just testing its
applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important
biophysical parameters in ecosystems or mapping species distributions. This Special Issue is aimed
at collecting UAV applications contributing to a better understanding of biodiversity and ecosystem
status, threats, changes and trends. Submissions were welcomed from purely scientific missions
to operational management missions, evidencing the enhancement of knowledge in: Essential
biodiversity variables and ecosystem services mapping; ecological integrity parameters mapping;
long-term ecological monitoring based on UAVs; mapping of alien species spread and distribution;
upscaling ecological variables from drone to satellite images: methods and approaches; rapid risk
and disturbance assessment using drones, ecosystem structure and processes assessment by using
UAVs, mapping threats, vulnerability and conservation issues of biological communities and species;
mapping of phenological and temporal trends and habitat mapping; monitoring and reporting of
conservation status.

Keywords: UAVs; ecological monitoring; biological conservation; drone mapping; biodiversity; phenology

1. Special Issue Overview

This special issue was proposed in 2017, November the 14th, and kindly accepted on November
the 21st. Announcements were spread during January 2018 through many different mailing lists dealing
with remote sensing and Geographic Information System, as well as personal invitations to a list of
232 authors with previous publications, on the use of UAVs in relation to the topics. First abstracts
were then submitted immediately after the call, having the first accepted and published paper on 12th

April. The initial deadline was scheduled for 31st July, but it was decided to extend to 31st October.
A total amount of 12 manuscripts were submitted from which 10 were finally accepted and

published, including one review paper and 11 research articles. All of them were peer-reviewed
by scientific reviewers suggested by authors and the editorial board. Some of the manuscripts had
to prepare full re-submissions according to reviewer’s suggestions. Rejections were merely related
to be out of scope. MDPI gently allowed submission of manuscripts which had been previously
compromised by authors with abstracts until November 2018. While the Special Issue was open,
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flyers were kindly prepared by MDPI which were distributed in several conferences and research
project meetings.

2. Special Issue Topics

A literature search using ISI Web of Science with the option, TS (UAV or UAS or Drone), provided
28,485 records from which 30% were classified under, engineering electrical electronic, 13% under
automation control systems and in the 3d position, remote sensing was found. The publication year
starts in 2010 with 720 publications and increases to 4723 in 2018. The USA leads the academic
production followed by China. By adding, and TS (REMOTE SENSING), records drop down to a
total of 1860, with just 37 indexed papers in 2010 to 475 in 2018. From these, 782 are strictly classified
under the remote sensing category and just 161 under the Environmental sciences category. This quick
literature search points out the delay in the application of drones for environmental issues in relation
to other knowledge fields. Additionally, it reveals the lack of published papers in this area.

This special issue has contributed to the spread the many diverse applications of drones in
ecological monitoring and biodiversity conservation. Three of the published articles have addressed
the main issues and opportunities in wildlife detection and mapping, and in both cases applied to
protected species. Bonnin et al. [1] used fixed-wing drones by means of in line transects and grid
missions to locate Chimpanzee nests in Tanzania. Potential unknown nests were identified although
many nests located in the middle of tree crowns could not be detected. The authors suggest the
combination of lower altitude flights with multirotor drones, multispectral cameras and oblique
surveys can lead to reduce false alerts and increase nest detectability. In any case, this study indicates
that one of the most widely used application of drones in wildland management, although most of
them remain unpublished. Similarly, Afán et al. [2] address the suitability of drone-borne images to
automatically map and count Glossy Ibis nests. While monitoring bird populations and productivity,
the staff have to recurrently visit the colony, and once per year enter the colony to confirm the census.
This effort is clearly benefited from the accurate counting by drone-borne images which clearly appear
as one of the most efficient application in environmental monitoring. Machine learning techniques are
contributing to enhance counting by identifying different species. One interesting option to locate
wildlife is, rather than feature identification or mapping, is to use drones for radio-tracking. This is the
subject addressed by Desrochers et al. [3] in its published paper, where a VHF (Very High Frequency)
receiver was mounted in the drone to test the accuracy in locating radio-transmitters in a dense
boreal forest. The results demonstrated that drone radio-tracking offers an efficient alternative to
the more labor-intensive, traditional approaches for radio-tracking small birds, amphibians, or small
mammals in rugged terrain. Further, more essays have to be completed to evaluate the limitations
while tracking moving animals and defining adequate flight paths or search patterns to find close
signals. All three studies are good examples of the wide spectrum brightly depicted by Jiménez López
and Mulero Pázmány [4] in the special issue review. The authors summarize the search for published
contributions of drone applications in wildlife monitoring and management, ecosystem monitoring,
law enforcement, ecotourism and environmental management and disaster response. An immense
diversity of applications reveals the wide flexibility and ingenuity of drone missions to retrieve critical
spatial data dealing with environmental monitoring and assessment.

A set of published articles under this special issue point out the important role of drone-borne
multispectral images for validation and upscaling of satellite images and derived products. This is
the case for the papers by Díaz-Delgado et al. [5], Pla et al. [6] and Canisius et al. [7]. The first
paper takes advantage of the high spatial resolution of multispectral images acquired over Doñana
marshes to retrieve relevant monitoring indicators related to ecological integrity of the ecosystem.
The intermediate scale provided by multispectral drone images are used to enlarge ground-truth for
Sentinel-2 images, which exposes a new methodological approach to assess the accuracy of large
scale ecosystem essential variables provided by Earth observation satellites, such as the Copernicus
European program or the international GEO-GEOSS. Similarly, Pla et al [6], used NDVI (Normalized
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Difference Vegetation Index) from multispectral images from a multirotor drone to evaluate damages
by one threatened bird species on rice paddies. Fine grain damages accounted from drone images was
later related to Sentinel-2 NDVI images in order to extend the assessment to larger areas. Although
the study was carried out on agricultural area, such agro-systems are habitats for the wildlife and
therefore, payments for damages have to be properly estimated to preserve biodiversity. Finally,
Canisius et al. [7], developed a multi-sensor platform to reliably measure land surface albedo providing
a strong relationship between direct total shortwave albedo measurements from the pyranometer
mounted on the UAV (Unmanned Aerial System) with Sentinel-2 and Landsat-8 estimates. This paper
demonstrates how drones can bridge the gap between fixed point, in-situ albedo measurements and
pixel-level measurements by satellites.

The special issue has also revisited classical remote sensing approaches to assist in post-fire
recovery monitoring and vegetation mapping using drones. Melville et al. [8] presented an excellent
example of accurate mapping of grassland communities with the use of a hyperspectral sensor.
This technology has quickly become affordable and light enough to be mounted in powerful multirotor
drones allowing to retrieve a continuum spectrum of plant spectral signatures. The authors also
made use of one of the most advantageous outcomes of drone mapping—point cloud and the derived
digital surface models. From this information, always inherently produced by drone gridded missions,
canopy height models as a function of bare ground models can also be retrieved. Their classification
procedure using random forest was enhanced with this valuable information. Fine scale and accurate
habitat mapping and monitoring with drones is evidenced by what becomes a reliable technique as
inputs in habitat assessment, such as the reporting on conservation status requested by the Natura
2000 European directive. Larrinaga and Brotons [9] also harnessed the Structure from Motion (SfR)
to derive canopy height and together, with several multispectral vegetation indices, use it to model
tree DBH (Diameter at the Brest Height) in a 20-year old burned area. The authors predict forest
recovery after fire with DBH as an indicator of plant canopy. The last, but not least, contribution by
Díaz-Delgado et al. [10] shows a very innovative proposal to use drones in long-term monitoring of
experimental climate change plots. The authors stressed the need to complement in situ measurements
in order to complement them by adding spatially explicit information to the effect of treatments on
native grassland communities. One of the findings reveals that heterogeneity in plant response to
treatments may easily hide species specific trends and changes.

There were no contributions of applications using LiDAR sensors onboard of drones which is
known to be widely used on natural areas with many different objectives in the framework of ecological
monitoring. Researchers and technicians are invited to submit their studies to Drones Open Access
journal. The authors look forward to have our journal indexed in the close future.

3. Message to Conservationists, Practitioners, Managers and Ecologists

Nowadays, the joint development of sensors, drones and image analysis techniques as machine
learning is providing an excellent opportunity to aid in environmental conservation and management.
Furthermore, not only rapid missions to assess the effects of sudden disturbances, but periodical
surveys carried out by programmed flights by drones, are providing invaluable assistance in decision
making as spatially explicit ecological and biodiversity monitoring. It is a matter of researchers to
provide and diffuse the suitability of drones to carry out very specific and timely missions enhancing
the necessary labor of day-to-day nature monitoring and management. There is also much discussion
about the aviation rules that should enable E-VLOS and B-VLOS to increase the operational use for
agriculture and nature applications. On the other hand, more research is needed about disturbances
of UAVs on species. The outcome of these discussions can have a big impact on the further use of
UAVs. Nevertheless, there is a wide consensus on the upcoming strong increase in the use of drones
for these topics.
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Abstract: Making agricultural production compatible with the conservation of biological diversity
is a priority in areas in which human–wildlife conflicts arise. The threatened Western Swamphen
(Porphyrio porphyrio) feeds on rice, inducing crop damage and leading to decreases in rice production.
Due to the Swamphen protection status, economic compensation policies have been put in place to
compensate farmers for these damages, thus requiring an accurate, quantitative, and cost-effective
evaluation of rice crop losses over large territories. We used information captured from a UAV
(Unmanned Aerial Vehicle) equipped with a multispectral Parrot SEQUOIA camera as ground-truth
information to calibrate Sentinel-2 imagery to quantify damages in the region of Ebro Delta, western
Mediterranean. UAV vegetation index NDVI (Normalized Difference Vegetation Index) allowed
estimation of damages in rice crops at 10 cm pixel resolution by discriminating no-green vegetation
pixels. Once co-registered with Sentinel grid, we predicted the UAV damage proportion at a 10 m
resolution as a function of Sentinel-2 NDVI, and then we extrapolated the fitted model to the whole
Sentinel-2 Ebro Delta image. Finally, the damage predicted with Sentinel-2 data was quantified at
the agricultural plot level and validated with field information compiled on the ground by Rangers
Service. We found that Sentinel2-NDVI data explained up to 57% of damage reported with UAV.
The final validation with Rangers Service data pointed out some limitations in our procedure that
leads the way to improving future development. Sentinel2 imagery calibrated with UAV information
proved to be a viable and cost-efficient alternative to quantify damages in rice crops at large scales.

Keywords: Sentinel; UAV; Parrot SEQUOIA; multispectral; vegetation indices; rice crops;
western swamphen

1. Introduction

Addressing human–wildlife conflicts is a fundamental challenge for conservation practitioners.
In some areas of the planet, the loss of lives, crops, or live-stock because of wildlife has significant
consequences for people’s livelihoods and their food and agricultural security [1,2]. Reconciling the

Drones 2019, 3, 45; doi:10.3390/drones3020045 www.mdpi.com/journal/drones5
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conservation of endangered species with human activities, as well as with socioeconomic uses and
human security, has been the subject of numerous studies and management programs. The most
commonly implemented actions are aimed at mitigating wildlife negative effects on agricultural
production and human health through mitigation operations or economical compensations for losses
caused by wildlife [3–5]. Quantifying and mapping wildlife-caused damages is essential to carry out
both kind of actions. Most methodologies are aimed at developing predictive risk maps [6], but in
the context of human–wildlife conflicts, it is crucial to develop accurate protocols for the reliable
verification of the authority of the causative species and their relation with damage claims [7]. These
protocols are fundamental in creating public trust in the legitimacy of compensation programs, and in
avoiding fraud and moral hazards. Finding simple and inexpensive methods to quantify damages
is a major challenge in decreasing the cost–benefit ratio to achieve conservation objectives. Medium
resolution remote sensing imagery as low-cost Unmanned Aerial Vehicles (UAV) has arisen as an
essential tool to meet this challenge.

Rice crops (Oriza sativa) are one of the agricultural habitats most affected by human–wildlife
conflicts [8,9]. Large populations of aquatic birds inhabit these agricultural habitats due to their high
productivity levels and similarity to natural wetlands [3]. Rice crops are one of the most important
bases of the rural economy in many regions of the world. For instance, in the region of the Ebro Delta
in the western Mediterranean, with more than 20,000 ha of surface area, the rice fields represent an
essential economic revenue, accounting for a significant proportion of the Spanish rice production.
At the same time, the Ebro Delta constitutes a fundamental area for the conservation of biodiversity.
Hence, some protection figures have been established to protect the area, namely the Natural Park and
Wildlife Reserve, Wetlands of International Importance (Ramsar Convention), Natura 2000 Network
Space, and recently, Biosphere Reserve for UNESCO’s Man and the Biosphere Program. In this context,
striving for agricultural production compatible with the conservation of the biological wealth of
the Delta is a priority objective of public administrations and represents an important challenge for
landscape managers.

The Western Swamphen is a species of conservation interest in Europe that is included in Annex I of
the Birds Directive and is considered a Least Concern species at the European level [10]. The population
in Europe is estimated at 3400–3800 pairs [10]. At the moment, the Iberian Peninsula contains 81% of this
population [10], and thanks to the application of conservation measures, at the end of twentieth century
the species had naturally recolonized some of the Iberian wetlands where it had disappeared [11].
However, its population increase in the Ebro Delta has caused the emergence of conflicts with rice
farmers, since the Western Swamphen uses rice crops as feeding grounds, leading to crop losses. Since
the Western Swamphen is protected by national and European legislation, actions taken to reduce
crop damages that may lead to changes in its conservation status, such as lethal control or captures
and translocations, cannot be undertaken without an assessment of alternative measures. In this
context, objectively quantifying Swamphen damage as accurately as possible is a requisite. Initially,
the damage assessment was only carried out based on field visits by regional ranges to the affected
crops. The obvious damages near the roads were easily evaluable and quantifiable, but the less obvious
damages located further away from the roads remained difficult to evaluate. In addition, this method
may be subjected to certain levels of subjectivity and without accurate evaluation of the committed
error. Thus, defining an objective methodology to quantify the damages is an essential challenge, both
for the benefit of the species and from an economic point of view.

Remote sensing medium resolution imagery has shown a great capacity to quantify damages in
crop lands. The satellites MODIS and Landsat have been widely used [12–14], but Sentinel-2, especially
for its finer resolution, constitutes a major asset for this kind of application [15,16]. However, due to
the types of damages that affect the majority of the crops, satellite resolutions are still too coarse. In this
sense, imagery provided by the high spatial resolution commercial satellites as Deimos-2, GeoEye-2,
QuickBird, or WorldView-2 could be an appropriate option [14,17,18]. Nevertheless, in some specific
decision making contexts the cost–benefit ratio is too high, especially if multiple images of different
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dates are required or large surfaces are needed. The use of lightweight UAV usually implies lower
economic costs than other remote sensing techniques when surveying relatively small areas (tens of
hectares) and can be a very good alternative [19–24], especially due to its finer resolution (better than
20 cm) and versatility. Lightweight UAVs and photogrammetric derived information as Digital Surface
Models (DSM) have been used to calculate crop damages by means of crop height estimation [25] or
grapevine canopy changes [26]. UAV multispectral information is also becoming very important due to
its ability to asses vegetation stress and damages through vegetation indices [27,28]. In fact, this ability
can be very useful to detect Western Swamphen damages, usually resulting in small and medium
vegetation gaps and plant vigor decreases in rice crops. However, mapping large areas with UAV,
such as the Ebro Delta, with more than 20,000 ha, may require considerable economic and technical
efforts [29]. In this context, some works use UAV information as field data to calibrate imagery from
coarser resolution satellites, such as Landsat or Sentinel-2, with correlative methodologies [30,31].

In addition to the developments in quantitative methodological work-flows, it is equally important
to offer the results in a comprehensible and useful format for managers responsible for damage
assessment and economic compensation guidance [6]. Developing comprehensible products to boost
conservation strategies at high efficiency ratios is a prerequisite.

Thus, this work has two main objectives: the first one is to test the ability to use UAV multispectral
imagery as ground truth information for calibrating the physical parameters calculated on medium
resolution satellite remote sensing imagery from Sentinel-2; the second is to translate the calibrated
remote sensing quantification into understandable and useful products for the landscape managers.
We tested these questions in the Ebro Delta region, in NE Spain, with rice crops affected by Western
Swamphen activity.

2. Study Area and Species

The Ebro Delta constitutes one of the largest wetland areas of the western Mediterranean,
at 320 km2. Its location per Ramsar site designation is 40◦43′ N, 00◦44′ E (Figure 1). The delta protrudes
around 30 km seaward, with a triangular shape created by the river. Of this, 20% of the area corresponds
to natural habitats, 75% is arable land, and the rest are urban areas. Most of the arable land is used for
intensive rice agriculture, but noticeable is that this type of agriculture was not implemented until
the late nineteenth century. Natural habitats encompass rich ecosystems corresponding to rivers,
sea, bays, beaches, dunes, riparian forests, coastal lagoons, and saltmarshes. As a result, the Ebro
Delta was declared a natural park in 1983 and a biosphere reserve in 2013. Rice paddies occupy 65%
of the Ebro Delta area, and together with tourism, constitute the main economic resource for the
approximately 15,000 local residents [3]. An abundant population of Western Swamphen has been
recorded, mainly distributed in natural wetlands and their surroundings, including rice fields [32].
At present, the Iberian Peninsula constitutes most of its European population and at the end of the 20th
century there was a significant population growth thanks to the implementation of active conservation
measures [11]. Western Swamphen cause rice damage through the cutting of stems for feeding and by
trampling during displacement (creating corridors) within the rice field (Figure 2). Also, in the case
of individual breeding, plaques are generated in the crop (Figure 2, right) due to the construction of
nests and the consequent trampling around them. The effects of Western Swamphen in the field are
therefore: (1) absence of plants (stems cut) and (2) damaged plants that rebound (with smaller size
and lower rice productivity). Overall, the affected field experiences decreased rice productivity. Due
to existing regulation [33], the government of Catalonia (regional administration) compensates the
affected farmers according to the surface area damaged. In the Ebro Delta, administrators had paid up
to €203,450 per year from 2003 to 2016 to compensate for damages on about 21,000 ha of rice fields [3].
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Figure 1. (Left) Ebro Delta location (red rectangle) over a Europe Administrative limits map. (Right)
Landsat image of the Ebro Delta. Green land cover corresponds to rice crops. Red rectangles show the
four agricultural plots where UAV (Unmanned Aerial Vehicle) images were captured (surveyed plots).

 

Figure 2. Field photos of damage caused by the western Swamphen on rice plots. (Left) Corridors
with damaged plants within the rice field, the most abundant damages. (Right) A plaque with a lack of
vegetation leaving the crop water visible.

3. Material and Methods

We aimed to: (1) calibrate Sentinel-2 images with UAV-derived data, and then (2) validate the
generated Sentinel-2 products with field information. The UAV multispectral imagery data were
captured in four agricultural plots and used as ground-truth information. The four plots were
representative of different levels of crop damage and types of cultivated rice. To assess the matching of
information between UAV images and satellite images, we calculated the proportion of damage in each
square of a 10 × 10 m mesh co-registered with Sentinel-2 pixels. Then, we selected Sentinel-2 images
close to the date of UAV imagery and calculated the Normalized difference vegetation index (NDVI),
explained in more detail in the following sections. To reduce noise in the analyses, the 10 m pixels
that were not purely of rice crops were removed. We then built a model that related the proportion
of damage assessed by UAV imagery to the Sentinel-2 NDVI data. We used the fitted relationship to
extrapolate rice damage to the whole Sentinel-2 Delta Ebro image. The prediction maps were validated
with independent damage information derived from field observations at the plot level. The following
sections explain the entire procedure in more detail.

3.1. Sentinel-2 Imagery

We used free Sentinel-2 imagery that had already been atmospherically-corrected by European
Space Agency’s (ESA) Sen2Cor algorithm (Level-2A) [34]. We selected sixteen available cloud-free
images from April to August 2017 corresponding to the Sentinel-2 31TCF zone: April 3, April 6, May 6,
May 16, May 23, May 26, June 12, June 15, June 22, July 2, July 5, July 12, August 4, August 14, August
21, and August 24. We calculated the Normalized Difference Water Index (NDWI) for every date.
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NDWI was proposed by McFeeters in 1996 to delineate the open water features by means of the green
and NIR wavelengths:

NDWI =
GREEN −NIR
GREEN + NIR

(1)

The water surfaces have positive values, while the surface of the earth and vegetation have 0 or
negative values. This NDWI time series was used to identify water channels near the fields to allow
later selection of pure rice crops squares, as is explained in Section 3.4. The August 24 image was
the one selected to quantify the maximum crop damages, because it matches the highest season of
Western Swamphen activity and is the available image close to the capture date of UAV images. Some
small clouds and their shadows present in this image were manually removed by screen digitization.
We calculated NDVI for the August 24 Sentinel-2 image, and we refer to this as Sentinel2-NDVI.

3.2. UAV Imagery Adquisition

High resolution image data were collected using a quadcopter (UAV Phantom 3 from DJI) [35].
This light weight (1280 g) UAV is capable of autonomous waypoint flight following a preplanned
route (Figure 3). A Parrot SEQUOIA multispectral camera was installed in the quadcopter, with four
1.2 megapixel monochrome sensors that collected global shutter imagery along four discrete spectral
bands: green (center wavelength (CW): 550 nm; bandwidth (BW): 40 nm), red (CW: 660 nm; BW: 40 nm),
red edge (CW: 735 nm; BW: 10 nm), and near infrared (CW: 790 nm; BW: 40 nm). The horizontal (H),
vertical (V), and diagonal (D) fields of view (FOV) of the multispectral camera were 61.9◦ (HFOV), 48.5◦
(VFOV), and 73.7◦ (DFOV), respectively, with a focal length of 4 mm. The camera was bundled with
an irradiance sensor to record light conditions in the same spectral bands as the multispectral sensor
ISO (International Organization for Standardization) value and exposure time was set to automatic.
The setting of every captured image is saved in a text metadata file with the irradiance sensor data.
All this information was taken into account during the preprocessing stage to obtain reflectance values
for the final multispectral product.

 

Figure 3. Phantom 3 DJI with the Parrot SEQUOIA camera and irradiance sensor, used for the aerial survey.

UAV imagery was captured at four different agricultural plots (Figure 1). These four plots were
selected with expert criteria for their representativeness in terms of levels of damage and type of
cultivated rice and were all near the potential harvesting date. After initial field inspection by rangers,
Plots 1, 2, and 4 appeared to present damages causing loss of rice cover in many areas, showing a
variety of spatial patterns (both scattered and aggregated). Initial inspections of Plot 3 did not detect
damage to the rice crop. The four plots may have been treated with a variety of agricultural treatments
in previous months, and plot 4 included a different rice variety. Images were captured during the same
day in consecutive hours before and after the noon. The flying altitude was 80 m for three plots with
an average GSD (Ground Sample Distance) of 8 cm and an average area of 12 ha. The flying altitude
for the fourth flight was of 100 m with an average GSD of 10 cm. The flight speed was 5 m/second
with 80% forward and sideways overlap. Images were captured on 17 August 2017, a few days before

9



Drones 2019, 3, 45

the harvest, when the maximum crop damages could be observed. Before each flight, images of the
Sequoia calibration panel (by AIRINOV) were captured in order to apply radiometric calibration
and corrections from reference reflectance maps. Crop monitoring requires accurate calibration [36],
therefore, we ensured application of the same methodology in all the flights: the target is level with the
ground and not at an angle; the target is not affected by shadows or reflections of eventual surrounding
objects; and the panel images are taken around 1 meter away from the panel and not facing the sun.
Several images were taken before the flight to ensure we obtained images with lighting conditions
as similar as possible to the ones during the flight. At the moment of application of the radiometric
calibration we chose the most appropriate panel picture for each flight.

Three of the plots were totally surveyed, corresponding to areas between 3 and 5 ha each, and the
fourth plot had a total area of 194.60 ha, and a representative surface of 17 ha (8.7%) was surveyed.

3.3. UAV Imagery Processing

UAV data was processed into a multispectral orthomosaic with Pix4Dmapper Pro 4.2 following
the “Ag Multispectral” template. Pix4D is based on the Structure from Motion algorithms and
also integrates computer vision techniques with photogrammetric algorithms [37,38] to obtain high
accuracy in aerial imagery processing [39,40]. Pix4Dmapper Pro computes key points in the single
images and uses them to find matches between images. From these initial matches, the software runs
several automatic aerial triangulation steps, bundle bloc adjustments, and camera self-calibration steps
iteratively until optimal reconstruction is achieved [29]. Then, a densified point cloud is generated to
obtain a highly detailed digital surface model (DSM) that will be used to generate the final orthomosaics
and reflectance maps for every plot (Figure 4).

 

Figure 4. UAV color infrared composition: NIR (near-infrared) + RED + GREEN; for one of the
agricultural plots (pixel resolution: 10 cm). Damages caused by Western Swamphen are shown in the
northern part of the rice plots (dark colors correspond to water without rice plants). In the upper part
of the image there is an important wetland, which is differentiated by a more dispersed wet vegetation
zone and a fragment of water body (with dark-blue color). Surveyed plot number 1.

The reflectance maps were built by applying radiometric calibrations and corrections. First,
radiometric calibration was performed by using the calibration target images that enable one to have an
absolute reference of radiometry for that day, and finally makes it possible to compare data coming from
several flights. Second, the radiometric corrections “Camera and Sun irradiance” aimed at correcting
terrain reflectance was also applied. Within this, the Pix4Dmapper first uses the values of ISO, aperture,
shutter speed, sensor response, and optical system and vignetting registered in the text metadata
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files (EXIF and XMP tags) for every single photogram to correct the camera. Then, the incoming
sunlight irradiance is corrected with the information provided by the sun irradiance sensor. This sensor
provides information on the light conditions during the flight within the same spectral bands as the
one captured by the multispectral sensor and it is registered in the same text metadata files described
above. This “Camera and Sun irradiance” correction normalizes the images captured during the flight
and, thus, allows one to compare images taken in different illumination conditions. Pix4Dmapper
applies this calibration and correction process to every single photogram just before it achieves the
final reflectance orthomosaic for every spectral band (Figure 3). We have calculated the mean error
in x-y coordinates by means of geolocation four-points-per-survey through screen digitalization in
the UAV final orthomosaic and in the 1:1000 official orthophotos. We have calculated the difference
between both points sets and the mean error in x and y is 0.56 m and 1 m, respectively.

We calculated the NDVI index for the UAV images. The normalized difference vegetation index
NDVI [41] quantifies vegetation by measuring the difference between near-infrared (NIR), which
vegetation strongly reflects, and red light (R), which vegetation absorbs with:

NDVI =
NIR−R
NIR + R

(2)

NDVI ranges from −1 to +1; negative values in wetland habitats are usually related to water
surfaces, while positive values close to 0 represent low green vegetation cover and values close to 1 are
usually associated with vegetation with dense green foliage. In this work, the NDVI index allowed
us to identify no-greenery vegetation pixels, with or without water pixels, and also low greenery
pixels, representing the damages caused by Western Swamphen in rice crops. It has been previously
found with images from Sentinel-2 [42] that the use of vegetation indices improves the results of crop
classifications over the use of the respective individual bands.

A simple Jenks classifier was applied separately for every flight and provided the highest
discrimination ability to create a binary green vegetation/no-vegetation map (Figure 5). The Jenks
classifier determined a class break value that produced two natural groupings by minimizing each
class’s average deviation from its mean, while maximizing each class’s deviation from the other class’s
mean. The thresholds to separate the non-vegetation from green vegetation with NDVI data were
different for each surveyed plot, taking values between 0.56 and 0.79, depending on the variety and
the state of vegetation development of each plot.

 

Figure 5. Surveyed plot 1: UAV-NDVI index on the left, and non-vegetation mask on the right. It is
possible to appreciate an important lack of vegetation in the north part of the plot and some scattered
damages in the middle and in the south part.
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A 10 × 10 m mesh was created for each surveyed plot from the August 24 Sentinel-2 image
pixels. The proportion of water and the proportion of non-vegetation for every 10 × 10 m square was
calculated by obtaining a proportion of no-greenery vegetation for both indices (Figure 6). Values
near 1 indicated a higher proportion of damage and values near 0 indicate lower or null proportion of
damage. From now on we will refer to this 10 × 10 m information as UAV-crop damage.

3.4. Selecting Pure Rice Crops Squares

In order to reduce noise from the analyses, we selected the 10 × 10 m squares that completely
contained rice crops (in contrast with other pixels that also contain other land uses, such as rural
tracks) (Figure 6). Two sources of information were used to make this selection: (1) Agricultural
Plot Map from the Catalan government, henceforthm SIGPAC (Spanish acronym of Geographical
Information System of Agricultural Plots); and (2) all the available April–August 2017 Sentinel-2
cloud free images. SIGPAC is a free downloadable cartography provided by the government of Spain,
which is renewed on a year basis. Pixels that were totally or mostly within a plot of “Arable Earth”
category were selected. However, this cartography scale does not include all water channels. For this
reason, Sentinel-2 imagery was also used to identify them. Since the water is not distributed equally
throughout the year on all channels, we selected the maximum NDWI value for every pixel of the
NDWI time series described in Section 3.1 to identify the maximum water that can flow at any time
of the year. Finally, with the two sources we computed a water channel mask and we applied it to
all UAV-crop damage and Sentinel2-NDVI data. In addition, it was necessary to filter some pixels
manually that the described methodology had not recognized (especially in the sampled plots).

Figure 6. Selected 10 × 10 m cells (co-registered with Sentinel-2 pixels) for surveyed plot number
1. The image shows the non-vegetation ratio calculated with UAV images for every Sentinel-2 pixel
used in the model calibration, from 0 to 1, where 0 represents green vegetation, or non-damage, and
1 non-vegetation proportion, or damaged. The background image corresponds to the UAV infrared
composition image. It is possible to detect some important damages due to an important lack of
vegetation in the north of the plot, and some pixels with a lower damage ratio due to scattered damage
in the rest of the plot.
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3.5. Calibrating Sentinel2 with UAV-Crop Damage Information

We calibrated Sentinel2-NDVI with UAV-crop damage information for the 10× 10 m cells. We used
a generalized linear mixed effect model (GLMM) that predicted the proportion of damage as a function
of NDVI value derived from Sentinel, and incorporated each plot as the random factor. We adopted a
logistic regression with a logit link function (Equation (3)).

ln
( UAVdamageratio

1−UAVdamageratio

)
= a + b ∗ Sentinel2_NDVI (3)

This logistic regression type was chosen because it allowed us to better fit values that cannot
range below 0 or above 1. The mixed model regression is suitable to use when some of the observations
share common sampling units that can gather some of the variance not directly explained by the fixed
factors. In this case each of the agricultural plots may hold differences in rice variety and phenology,
seed time, or irrigation conditions, but similarities in each of the cells within each plot. The variability
of plot features is included through the random factor of the mixed model.

We checked for model residuals distribution through a fitted residual plot, and we evaluated
model goodness-of-fit through the marginal R2 (explained by fixed factors), conditional R2 (explained
by both fixed and random factors), and the Root Mean Square Error (RMSE). The model was validated
by applying a cross-validation method using 80% of observations for calibration and 20% for testing.
Predicted values for test observations were compared to observed values with a linear regression
obtaining an adjusted r-squared and a test RMSE. To minimize the bias of the subsampling test data,
we ran a 10-fold random subsampling cross-validation and we finally obtained an average adjusted
r-squared and RMSE for the ten sub-validations.

3.6. Crop Damage Evaluation at the Plot Level: Translating the Final Models into Useful Products for
Landscape Managers

The management unit for the landscape managers is the SIGPAC agricultural plot. The payments
for damages are granted based on damage that occurred in each agricultural plot and quantified in
hectares, so our goal was to provide a measure of damage per SIGPAC plot. We assume that the
damages that cause large loss of vegetation, as the ones observed in the north of the surveyed plot
number 1 (from Figure 4 to Figure 6), are the minority, and the majority of damages represent a small
proportion of the 10 m Sentinel-2 pixel (check photographs in Figure 2). We also observe that most parts
of 10 m pixels in the whole Delta have an estimated damage ratio under 1% that could not be considered
as real damage caused by Wester Swamphen. Thus, we needed to identified pixels with significant
crop damage that would be caused by the bird and then the final damage map would correspond to
the sum of the full pixel surfaces, with significant damage values for each agricultural plot.

First, we needed to identify this significant crop damage threshold. To proceed with this
identification, we tested different thresholds: 4%, 6%, 8%, 10%, and 20%. The selection of these
thresholds took into account a compromise between level of significant damage (>1%) and number of
damaged pixels selected within every threshold. Low thresholds selected a great number of pixels but
may have included pixels that were not actually damaged by birds. Instead, high thresholds selected
only pixels with large loss of vegetation, avoiding also damaged pixels without large loss of vegetation.
Then, the sum of the damaged pixels for each threshold in each surveyed plot was calculated. Finally,
this different estimations at the agricultural plot level were validated [30,43] with ground information
from Rangers Service from the Catalan government, which follows an established protocol to assess
crop damage in the field. Once a farmer has detected some damage caused by the Western Swamphen,
he claims the assessment on the field by the Rangers Service to quantify damages and receive the
corresponding payments. This assessment is performed on the ground, next to the affected plot, and it
is only based on expert criteria. It does not constitute an exact quantification of the damages but it
offers an approximate value to evaluate models’ predictions.
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4. Results

The four surveyed plots showed different ranges of UAV-crop damages and Sentinel2-NDVI at a
10 m pixel level. Plot number 1 and 2 held a wide UAV-crop damage range (0 to 0.97, and 0 to 0.93,
respectively, Table 1), whereas the UAV-crop damage range in plot number 3 was between 0 and 0.36,
and the crop UAV-crop damage for plot number 4 was always under 0.04. This indicated that plots 1
and 2 have larger parts with loss of vegetation, while the damage in crops 3 and 4 are smaller and
dispersed throughout the plot. Sentinel2-NDVI range of values also showed clear differences: plot 1
had the widest range (0.32 to 0.78), plot number 2 ranged between 0.38 and 0.74, plot number 3 had
Sentinel2-NDVI ranges between 0.38 and 0.95, and plot 4 showed a small range above 0.5, specifically
between 0.52 and 0.78.

Table 1. Ranges of UAV-crop damage and Sentinel2-NDVI (Normalized difference vegetation index)
per pixel for all the 10 m pixels in the surveyed plots.

Plots UAV-Crop Damage Range Sentinel2-NDVI Range

1 0–0.97 0.32–0.78
2 0–0.93 0.38–0.74
3 0–0.36 0.38–0.95
4 0–0.04 0.52–0.78

The selected fitted generalized linear mixed model between UAV-damage ratio and Sentinel2-NDVI
achieved good model adjustments, with a RMSE of 0.054 (Table 2). The random effect of the variable
“surveyed plot” appeared significant (<0.001), meaning that the intercept of the relationships between
Sentinel2 and UAV-damage differed by plot. The model presented a goodness of fit explained by fixed
effects (Sentinel2-NDVI) of 48%, described as marginal R2 in Table 2, and explained by both fixed and
random (surveyed plot) effects of 81%, described as conditional R2 also in Table 2. The cross-validation
decreased its prediction ability in comparison to the full calibrated model, but still achieved relevant
performances, with an average of 57% in the regression between observed and predicted values and a
RMSE of 0.102 (Table 2). The Sentinel2-NDVI index exerted a negative influence in predicting observed
damage: an increase in Sentinel2-NDVI values decreases the proportion of Western Swamphen damage
described by UAV (Figure 7).

Table 2. Goodness-of-fit estimate values for the fitted model and an average of 10 repetitions of model
validation, with 20% of the dataset randomly selected for each repetition represented by the Marginal,
Conditional and Adjusted coefficient of determination (R2) and the Root Mean Square Error (RMSE).

Model Goodness-of-Fit Estimate
Model Validation (10-Fold

20% Dataset Validation)

Marginal R2 Conditional R2 RMSE Adjusted R2 RMSE

0.481 0.814 0.054 0.572 0.102

The model predicted low values of damage proportion, close to 0, in most parts of the pixels with
Sentinel2-NDVI values above 0.55 (blue line in Figure 7). NDVI values under 0.55 predicted damages
ratios from 0.05 to 1 (corresponding to 5% and 100% respectively). Most pixels had a damage ratio
under 0.20, decreasing considerably the number of pixels with damage ratios above 25%. However,
in contrast to what was expected, there are some pixels with damages between 0.12 and mostly up to
0.25, with relatively high Sentinel-NDVI values, specifically with values between 0.6 and 0.8 (Figure 7),
most of them belonging to plot 3.
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Figure 7. Scatterplot showing the relationships between UAV-crop damages and Sentinel2-NDVI.
The blue line shows the best-fit model. Every surveyed plot is represented in different colors. Plot 4
(violet color) has got very low UAV-crop damages and high Sentinel2-NDVI values, so it is barely
visible on the graph.

We applied the resulting model to the whole August 24 Sentinel-2 NDVI product for the Ebro
Delta. The final map informed about proportion of damage per pixel with values between 0 and 1
(Figure 8). The predicted crop damage map identified the pixels with large areas of no-vegetation,
with colors from yellow to red in Figure 8. Most part of the Delta had values close to 0, represented by
green colors (Figure 8).

Figure 8. Predicted crop damage according to the NDVI model for the whole Delta (left) and a zoom
to surveyed plot 1, in the south west of the Delta (right). Both figures take values from 0 to 1, colored
from green to red, respectively, representing a pixel ratio damage from 0 to 1.

Finally, we applied the defined damage thresholds (4%, 6%, 8%, 10%, and 20%) to calculate
the estimated agricultural plot damage (Figure 9). Once a pixel has a predicted damage above this
threshold, the entire pixel is accounted as damaged. Pixels above these thresholds represented 13%,
12%, 11.6% 11.2%, and 10% of the total predicted surface, respectively. Therefore, damages ratios under
4% represent the majority of the Delta pixels (87% of total crop pixels).

The validation of the different thresholds with ground information from the Rangers Service
showed an underestimation of damages in plots 1 and 2 (Table 3), even in the lowest damage ratio
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threshold. For plot 1, the largest threshold of damage assessed (20%) included some of the pixels
with higher damage identified visually (Figure 9, northern part). On the contrary, and unexpectedly,
the lowest threshold (4%) did not include all the high damage pixels identified visually, but it is also
important to note that this threshold correctly identifies the scattered damages in the center of the plot.
In plot 3, predicted damages are virtually null, similar to the information gathered by the Rangers
Service (Table 3). Finally, there is a slight overestimation of predicted damages in plot 4, although as the
damage threshold per pixel rises, the total value of the plot is closer to the quantification by the Rangers
Service (Table 3), being the 20% threshold, which is slightly lower than Rangers Service quantification.

Table 3. Model validation at the plot level for the four surveyed plots with ground level Rangers
Service information. This table shows the plot surface (ha) for each surveyed plot from the SIGPAC
(Geographical Information System of Agricultural Plots from Catalan Government) plot surface
information, the Rangers Service damage quantification, and predicted damage per agricultural plot at
different thresholds, corresponding to different % of damage per pixel (4%, 6%, 8%, 10%, and 20%).

Plot Code
Plot Surface

(ha)

Rangers
Service (ha)

Predicted Damage per Agricultural Plot
(ha) at Different Thresholds

>4% >6% >8% >10% >20%

1 4.53 1.09 0.47 0.29 0.16 0.11 0.06
2 5.16 0.66 0.52 0.47 0.45 0.42 0.37
3 3.37 No damage 0.01 0.01 0.01 0.01 0.01
4 194.60 2.19 2.51 2.43 2.36 2.35 2.18

Figure 9. The yellow pixels show the selected damaged pixels at different thresholds of damages
(4%, 6%, 8%, 10%, and 20%) in plot 1. There are 6 pixels with damage ratios above 20%, 11 pixels with
damage ratios above 10%, 16 pixels with damage ratios above 8%, 29 pixels with damage ratios above
6%, and 47 pixels with damage ratios above 4%.
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5. Discussion

The quantification of Western Swamphen crop damage is a big challenge due to its fine grained
patterns. The methodology developed in this work, and especially the results and validation of the
regression model, appear promising for quantifying this type of damage with Sentinel-2 imagery.
The prediction of damages at the agricultural plot level with a previous filter of pure crop pixels is also
promising. Previous analyses including pixels containing water channels, roads, pathways, or other
land covers showed weaker relationships and major errors (not shown).

The model can more-easily predict damages that produce important loss of vegetation, and it has
more difficulty in identifying the less-intense and scattered damages, i.e., less than 25% of damage per
10 m pixel. The scattered damages are able to be detected from UAV but are more difficult to appreciate
at Sentinel-2 level because the NDVI values in these pixels remains high. The model presents important
limitations to predict damages that only affect the rice grains without decreasing plant vigorousness,
and even more if the damaged areas are covered by some type of vegetation, such as algae, which
also produces high values of greenery. These types of damages are also arduous to detect with UAV
multispectral imagery.

The Sentinel-2 10 m resolution resulted in consistent relationships with UAV information, since
the fitted model achieved a good adjustment, although differences appeared among the four surveyed
plots that may decrease the adjustment in the cross-validation. We assume that there are not important
calibration differences between flights that could influence these results because we have ensured we
applied the same methodology to capture calibration panels pictures and we also assume that the
reflectivity is quite similar in the four flights due to the hour of the flights (few hours before and after
the noon) and the date of the year (August 17th) in the Delta Ebro region. These differences might
be related mainly to the differences in the pressure exerted by the species on the crop, rice variety,
or agricultural treatments, or due to minor differences in phenology state, but these effects must be
minimal because all fields were close to being harvested. These differences increase the uncertainty of
the model, but the mixed generalized model is appropriate because it allows incorporation of such
differences between crops as a random factor and derivation of one single model for the whole Delta
area. The use of a single model for the whole Delta that incorporates the intrinsic variability of rice
crops facilitates the transfer of the methodology to the landscape managers in order to use an objective
methodology to quantify damages and define economic compensation strategies.

The Sentinel-2 10 m information resolution also allows a promising prediction of damages at
the agricultural plot level. The selection of an adequate significant damage threshold shows good
potential for identifying scattered damages at this scale. Considering a low damage ratio pixel as a
whole affected pixel seems to counteract the difficulties of detecting scattered damages at the 10 m
pixel level. This may be reasonable, because according to expert knowledge, scattered damages may
show aggregated patterns, therefore, close to some of the detected damages there may be damages
that effect rice production but produce low NDVI decrements that are very difficult to detect, even
with UAV. The filtering of agricultural pure pixels may produce an underestimation of damages in
pixels with important loss of vegetation because the majority of pixels with large loss of vegetation
are near agricultural crop edges next to roads and water channels, and some of them they may have
been excluded from the analysis, meaning they are not accounted for in the total damaged surface per
agricultural plot. On the other hand, automatic pixel filtering also has other limitations in the other
direction—there may also be an overestimation of damages in pixels with a small fraction of other uses
that have not been filtered by the automatic methodology.

One of the highlights of this project has been the use of multispectral information. The NIR
channel information from UAV allowed us to describe the characteristics of the vegetation, which are
not well described by using the visible spectrum. At the same time, multispectral information enabled
the generation of products more related to the multispectral medium resolution information derived
from satellites as Sentinel-2 or Landsat. Previous works applying calibration of multispectral remote
sensing measurements from UAV are very few and are aimed at quantifying other ecosystem attributes,
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such as fire severity [30,31]. In these cases, correlations between UAV and medium resolution remote
sensing imagery have been found to be higher than the ones presented in this work. This may be
because the damages caused by large forest fires are more apparent and visually-identifiable from
medium resolution remote sensors than the Western Swamphen damages.

This calibration can be used to estimate damages in Sentinel images in other temporal or spatial
contexts. Further validations are fostered in order to better test the capability to properly predict
these kinds of damages. However, it is important to note that there may be other animal species that
produce similar damages as the ones produced by the Western Swamphen. Moreover, images might
detect other agronomic variations of the crops themselves due to diseases, germination problems,
environmental variations, etc., with similar responses to the damage produced by animals. For this
reason, a complementary expert identification of the plots that have been damaged by this species will
generally be required in order to correctly estimate the final cause of damage to the rice crop.

Finally, we conclude that the models in this work improve the cost-efficiency of the quantification
of Western Swamphen damage in large rice crop areas, especially in terms of objectivity. However, the
methodology presents some weakness that should be addressed in the future to enhance the robustness
of the models. We believe that the main points to consider could be the following:

• Exploring other UAV vegetation indices that could improve the regressions with Sentinel-2
imagery in order to better discriminate scattered damages, and also identify damaged spots that
have been covered with algae or other vegetation and damages that only affect the rice grains.

• Analyzing in greater depth the potential relationship between different rice types and the detectable
damage. Different varieties of rice are cultivated, each one with different morphology, and these
differences could affect the detectability of the damage.

• Analyzing the effects, including the information from neighboring pixels.
• Improved mapping of water channels, roads, and pathways cartography in order to extract easily

the Sentinel-2 pixels with these land covers.
• Working on a reliability map aimed at offering the land manager proper information about the

real quality of the final model at the plot level.

6. Conclusions

We have introduced here a new methodology to use Sentinel-2-based NDVI as a proxy to
quantify rice crop plot damages caused by Western Swamphen. Furthermore, we have shown how
satellite-derived crop damage estimates can be calibrated by using UAV multispectral imagery onboard
a low-cost unmanned vehicle. Our approach allows estimation of rice crop damage at large scales
with relatively good accuracy. This approach offers a good, cost-effective alternative to high resolution
imagery from more expensive, finer-resolution commercial satellites. Following works on knowledge
transfer will improve the preparation of quality maps that could allow assessment with a greater
accuracy of crop damages. Providing information about the quality of the products and their limitations
is crucial for a useful knowledge transfer process.
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Abstract: A multiple sensor payload for a multi-rotor based UAV platform was developed and tested
for measuring land surface albedo and spectral measurements at user-defined spatial, temporal,
and spectral resolutions. The system includes a Matrice 600 UAV with an RGB camera and a set of
four downward pointing radiation sensors including a pyranometer, quantum sensor, and VIS and
NIR spectrometers, measuring surface reflected radiation. A companion ground unit consisting of a
second set of identical sensors simultaneously measure downwelling radiation. The reflected and
downwelling radiation measured by the four sensors are used for calculating albedo for the total
shortwave broadband, visible band and any narrowband at a 1.5 nm spectral resolution within the
range of 350–1100 nm. The UAV-derived albedo was compared with those derived from Landsat
8 and Sentinel-2 satellite observations. Results show the agreement between total shortwave albedo
from UAV pyranometer and Landsat 8 (R2 = 0.73) and Sentinel-2 (R2 = 0.68). Further, total shortwave
albedo was estimated from spectral measurements and compared with the satellite-derived albedo.
This UAV-based sensor system promises to provide high-resolution multi-sensors data acquisition. It
also provides maximal flexibility for data collection at low cost with minimal atmosphere influence,
minimal site disturbance, flexibility in measurement planning, and ease of access to study sites (e.g.,
wetlands) in contrast with traditional data collection methods.

Keywords: UAV; albedo; hyperspectral; Landsat 8; Sentinel-2

1. Introduction

Surface albedo, the fraction of the incident solar radiation that the surface reflects, controls
the radiation absorption and microclimate conditions of soil and vegetation canopies, which affect
physical, physiological, and biogeochemical processes such as evapotranspiration and ecosystem
carbon cycle [1,2]. Albedo of vegetated land surfaces vary largely because of the seasonal changes of
the land surface conditions and persistence changes of land use and land cover. Plant phenological
cycles, including leaf growth and leaf fall, and temporal variations in foliar water and chlorophyll
content control leaf optical characteristics modify the seasonal distribution of surface albedo [3–6].
Further, seasonal variations in snow cover cause large variations in surface albedo [7]. Clear-sky days
tend to have lower surface albedo values than cloudy days in winter [8]. These changes can result in
dynamic effects in surface albedo and ultimately ecological processes.
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There are several operational surface albedo products from satellite remote sensing with spatial
resolution ranging from approximately 0.5–25 km and temporal frequencies of daily to monthly [9].
Most notably these products include Moderate Resolution Imaging Spectroradiometer [10], Advanced
Very High Resolution Radiometer [11], Polarization and Directionality of the Earth Reflectance [12] and
Meteosat [13]. However, coarse resolution products are not detailed enough for studying ecological
processes in small dynamic ecosystems such as wetlands. Retrieving surface albedo from high spatial
resolution remotely sensed data (e.g., Landsat 8 and Sentinel-2) is methodologically challenging, in part
because of the narrow angular sampling and the incomplete spectral sampling from a limited number
of wavebands [2] and demands in-situ calibration and validation datasets. In-situ albedo measurements
have long been using sensors mounted on research towers. These measurements, though, demand a
high logistical requirement and only a few surfaces can be characterized and measured [2]. In order to
account for a wide range of surface cover types, aerial based sensor system can play an important role
in measuring surface albedo. Measurements from unmanned aerial platforms effectively bridges the
observational scale between point-based tower measurements and satellite imageries [14].

Unmanned aircraft systems (UAS) are small planes capable of carrying small-sized sensors [15]
and [14,16] use UAS mounted spectrometers or cameras to measure reflectance, which is used to
calculate surface albedo or compare to MODIS products. The deployment of multi-rotor based
UAV systems for remote sensing applications has been made possible by the miniaturization of
technology, including accurate GPS systems, accelerometers, flight control systems and very light
weight sensors [17]. To-date the emerging UAV technology has had only a few studies using UAVs
to estimate surface albedo [14,16,18]. This paper describes multi-rotor based UAV system integrated
with multiple small sensors, which are available in the market. The relatively low-cost UAV system
carries multiple sensors that provide land surface parameters such as land cover, vegetation structure,
total shortwave albedo, visible albedo, hyperspectral reflectance and vegetation indices at a particular
time in different spatial sampling. System can acquire measurements over an area with multiple
measurements that are comparable to the pixel size of high-resolution remote sensing (Landsat 8 and
Sentinel-2) derived products. In order to demonstrate its capabilities, test albedo measurements were
made in a protected wetland region where access is limited to study the local-scale variations in
tandem with a ground based upward looking system and compared with the satellite derived albedo
estimates of Landsat 8 and Sentinel-2. The comparison provides the necessary data for understanding
the consistency between sensor measurements and satellite based estimates. This UAV system can help
to recommend the in-situ albedo measurement protocol, which includes environmental conditions,
viewing geometry, illumination geometry, properties of the target, measurement timing, instrument
calibration and experimental design, for different land covers.

2. System Development

2.1. UAV Platform and Instruments

The UAV chosen for this system is the Matrice 600 (M600), DJI’s new flying platform [19] designed
for professional aerial photography and industrial applications (Figure 1). The Matric 600 was chosen
as it has a number of mission critical features that are favorable for our research requirements. It
has six rotors providing redundancy in case of rotor failure and enhanced stability. The UAV can
recover itself from failure of a single battery because of its smart battery management system. The
Matrice 600 is comparatively larger than many other drones; however, it is built of light-weight stiff
carbon fibre and it is able to fold up for transportation. It has an approximately 40 minute hover
time without a payload and 18 minutes with maximum payload (5.5kg). There is sufficient room for
mounting of sensors. It has retractable landing gear, which ensures that the legs do not disturb sensor
measurements. The Matrice 600 has a powerful operating system, which optimized flight control
performance, operated by revolutionary A3 flight controller [19]. The flight control system has a
transmitter and a mobile device, such as a tablet or smartphone, can be used to design flight paths and
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operate the drone. The Matrice 600 supports the DJI Go, the DJI Assistant 2 and the Litchi apps that
give users a built-in flight simulator, HD view, battery level status, redundancy status, transmission
strength, etc. Data regarding the use and operation of the UAV, flight telemetry data such as speed,
altitude, compass, pitch, roll, battery life and information about the gimbal and camera and operation
records are recorded in the system.

Figure 1. The Matrice 600 UAV, Zenmuse Z3 camera, pyranometers, Quantum sensors, and Visible and
NIR spectraometers.

Instruments that were used in the system include a digital camera, a pair of broadband
pyranometers, a pair of broadband quantum sensors, a pair of narrowband visible (VIS) spectrometers
and a pair of narrowband near infra red (NIR) spectrometers (Figure 1). The Zenmuse Z3 digital
camera supports 4K video recording (equivalent of 8.9 MP) at 30 frames per second and 12MP still
photographs every 3 seconds. For high along track overlap, the 4K video is preferable as it has
similar ground pixel resolution as the still photographs, but with a much high frequency. Zenmuse
Z3 supports Micro SD cards with a capacity of up to 64GB to store high-resolution video data, photos
and flight telemetry data.

The LI-200R Pyrometer (Li-Cor Inc., Lincoln, Nebraska USA, www.licor.com) measures global
solar radiation (direct and diffuse) in the 400 nm to 1100 nm broadband range. It measures solar
irradiance (the radiant flux incident on a receiving surface from all direction) received on a horizontal
surface with a silicon photodiode mounted under a cosine-corrected acrylic diffuser [20]. The
sensor output is a current (μA) signal that is directly proportional to hemispherical solar radiation
(Wm−2). The LI-190R Quantum sensor (Li-Cor Inc., Lincoln, Nebraska USA, www.licor.com) measures
Photosynthetically Active Radiation (PAR) in μmol of photons m−2s−1 [20]. It measures PAR between
400 nm to 700 nm broadband range, which vegetation uses for photosynthesis [20]. The sensors are
connected to data loggers, which are programmed to collect data every 3 s. A calibration constant,
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which can be found in certificate of calibration, is used to convert the current signal into units of
radiation (Wm−2).

The spectral response functions of the LI-200R pyranometer and LI-190R quantum sensor in
relation to Landsat 8 and Sentinel-2 satellite sensors are shown in Figure 2. The spectral response
functions for the spectral bands sampled by the satellite sensors show a broad similarity in both
position and bandwidth. The spectral response function of the quantum sensor is wide enough to
cover the blue green and red spectral bands sampled in the visible range by the satellite sensors.
The large difference, however, is between the satellite sensors and the pyranometer, and whilst the
broadband pyranometer samples across the entire VIS-NIR spectrum, the contributions are weighted
towards the NIR, with relatively less signals coming from shorter visible wavelengths, particularly in
the blue-green region.

Figure 2. Relative spectral response functions (normalized to one) of LI-200R pyranometer, LI-190R
Quantum sensor, Landsat 8 OLI and Sentinel-2 MultiSpectral Instrument (MSI) in visible and near
infrared (VIS-NIR) range.

The STS-VIS Spectrometer (Ocean Optics, Largo, FL, USA, www.oceanoptics.com) measures the
radiation within the visible range of 350 nm to 800 nm and the STS-NIR Spectrometer (Ocean Optics,
Largo, FL, USA, www.oceanoptics.com) measures the radiation in the infrared region of 650 nm to
1100 nm with 1.5 nm spectral resolution. It is recommended to “warm up” the spectrometers prior
to use for spectral measurement collection because the VIS and NIR spectrometers’ arrays warm up
at different rates that can cause spectral steps in the overlap region between VIS and NIR [21]. The
spectrometers are connected to STS Developer’s Kit [22] that contains a Raspberry Pi B+ microcomputer,
a Wi-Fi™ dongle, a SD card containing all the software, a clock and a Lithium-Ion battery. The battery
is able to provide 5 Volts and at least 1000 mA through a micro-USB connection. A laptop is used to
communicate with the spectrometers and to setup the spectrometer parameters. OceanView allows
complete control of setting the parameters for all system functions, such as: acquiring data, electrical
dark-signal correction, boxcar pixel smoothing, and signal averaging. Integration time is an important
parameter and it is recommended to adjust the integration time to acquire the maximum amount
of light up to 85% of the spectrometer’s capability [23]. Other advanced features support several
data-collection options such as independently store and retrieve spectral data as ASCII files to disk
using auto-incremented filenames.
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2.2. Systems Set-Up

The system is composed of a UAV sub-system (Figure 3a) and a ground sub-system. The UAV
sub-system includes a camera and four radiations sensors (Figure 3): one from each pair mentioned
above. The camera is mounted using DJI 3-axis gimbal system onto the Matrice 600 and stream
live HD video to the DJI or Litchi apps. One pyranometer and one quantum sensor are connected
with a CR300 data logger and mounted on the UAV. Similarly, one VIS spectrometer and one NIR
spectrometer are connected to a microcomputer and mounted on the UAV. The data logger and the
microcomputer are powered by a separate Lithium-Ion battery. All the sensors are mounted on the
UAV using a light-firm aluminum frame and are pointing down for measuring reflected radiation
from the land surface.

Figure 3. UAV (a) and ground (b) systems.

In addition to flight control system, the ground unit includes the second set of pyranometer and
quantum sensor that are connected with a CR300 data logger and the second set of VIS and NIR
spectrometers that are connected to a microcomputer. The ground pyranometer and the quantum
sensor are pointed vertically upward to record downwelling solar radiation (direct radiation from
the sun and diffuse radiation from the sky). The VIS and NIR spectrometers are set to face the
calibrated white panel (~100% reference standard) to measure downwelling radiation. The ground
unit is mounted on a tripod that helps to precisely level the system with a clear view of the sky or
surface to ensure accurate measurements. Because the downwelling and reflected radiation measured
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by the sensors are used to estimate the surface albedo, it is recommended to operate the two system
close to each other in order to minimize the differences between their respective ground footprints.
The laptop is used to communicate with the UAV and ground sensors, and to set up clock time and
the spectrometer parameters, such as integration time and acquisition timing before a flight. The
spectrometers’ microcomputer can be communicated with the laptop via wireless network to start,
stop, and view the spectrometer data in real time.

2.3. Data Processing Chain

The data is processed using the workflow described in Figure 4. Data regarding the operation
of the UAV including time, coordinates, speed, altitude, compass, pitch, roll, and information about
the gimbal and camera are recorded in the system mission path file. Multispectral camera, ground
and UAV data loggers (pyranometers and quantum sensors are connected) and ground and UAV
microcomputers (VIS and NIR spectrometers are connected) write a millisecond level timestamp (from
turn on time) and a real-world timestamp, based on their system’s time, in their data files. Therefore, it
is very important to synchronize the internal clocks to an accuracy of 1 second on all devices such as,
the iPad, laptop, ground and UAV data loggers, and ground and UAV microcomputers. The timestamp
is the common field (link) of all the datasets from the camera and the sensors, and is used to get the
coordinates of the photos and sensor readings. The downward sensors are aligned within the airframe
so that they are level when the UAV is in stable flight. Though the M600 is comparatively a stable
platform, having stable flight is not always possible as the UAV platform orientation varies due to
wind, its own rotation, and instability during acceleration and deceleration. Errors due to instrument
tilting can be limited by omitting radiation data recorded when the pitch or roll of the UAV exceeded
3◦ [14].

Figure 4. The data processing workflow.

The 4K videos are imported into Pix4D Mapper (www.pix4d.com) and one frame per second is
extracted. The flight path information is used for georeferencing the extracted frames. This can be done
without GPS-surveyed ground control points because the software pre-aligns the images based on
the image matching technique to achieve accurate image alignment. The technique used by Pix4D to
obtain a point cloud is a combination of Structure from Motion and photogrammetry [24]. These two
techniques combined allow the retrieval of camera and target positions in a three dimensional system
for all photographs. Geographic information can be added to the 3D scenes with ground control
point and/or photographs with geo-information. The initial step creates a set of 3D matching points
and the second steps densified that point cloud. A final step creates a high-resolution orthomosaics
used to identify detailed land cover which will be used for the interpretation of spectral data and
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understanding the BRDF effects. Orthomosaics only create maps with 2D information, whereas point
cloud gives 3D information such as DSM, DEM and structure of vegetation.

Spectrometer data is acquired in raw format as intensity value that depends on the integration
time. First, the ground sensor measurements are adjusted with the calibration coefficients of the
white panel for each wavelength. Dark noise (measured with the lens cap on) is subtracted from both
intensity readings at each wavelength. The data from the UAV and ground sensors need to be aligned
based on time/coordinate prior to calculation of reflectance. Reflectance of ground targets is calculated
as stated in [25].

ρ′(λ) =
I(S, λ)

I(R, λ)
(1)

where ρ’ is nominal surface reflectance, λ is wavelength, I is the intensity recorded by the spectrometer
for target surfaces (S) and the intensity adjusted with the calibration coefficients of the white reference
(R), respectively. From the reflectance, different vegetation indices can be calculated.

The final stage in the workflow is to calculate albedo using coincident measurements obtained
from upward and downward facing pyranometer and quantum measurements, respectively. Upward
and downward hemispherical reflectance are measured using broadband pyranometers, the ratio
of which provides an estimate of the total shortwave albedo. Similarly, upward and downward
hemispherical PAR are measured using quantum sensors and the ratio is an estimate of the visible
albedo. Here, downward radiation is measured at a fixed ground station and it is recommended to
keep the ground unit within the vicinity to keep the upward and downward facing sensors under the
same illumination condition, especially when the illumination conditions rapidly vary with variable
cloud cover.

3. Test Measurements at Mer Bleue Wetland

A test case study was conducted in Mer Bleue wetland area (Figure 5) which is a boreal peatland
ecosystem that is commonly found in northern Canada.

3.1. Study Area

The Mer Bleue Conservation Area (Figure 5) is a 33.43 km2 protected area (45◦24′34”N,
75◦31′07”W) in Eastern Ontario, Canada. The conservation area is about 70 m elevation from mean
sea level and is covered mostly by bog, marsh and bordered by patches of forests. The sphagnum
bog contains treed bog (black spruce forest) and the open bog vegetation. The species composition of
wetland types are described based on [26]. The forest is dominated by black spruce (Picea mariana) with
some larch (Larix laricina), trembling white aspen (Populus tremuloides) and grey or white birch (Betula
spp.). The bog has a complete ground cover of mosses (Sphagnum capillifo-lium, Sphagnum magellanicum),
with a shrub canopy dominated by evergreen shrubs (Chamaedaphne calyculata, Kalmia angustifolia, and
Ledum groenlandicum), with some deciduous shrubs (Vaccinium myrtilloides) and scattered sedges. The
marsh areas around Mer Bleue are covered by plants such as cattails (Typha latifolia), alders (Alnus
rugosa), willows (Salix spp.), and a variety of sedges (Carex spp.). The upland area at the boundary of
the bog is covered with mixed forest of conifers and deciduous species. The predominant species in
the mixed forest included white pine (Pinus strobus), hemlock (Tsuga canadensis), sugar maple (Acer
saccharum) and beech (Fagus spp.).

3.2. UAV Data Acquisition

Flight planning was done with the Litchi for DJI (app), which is used to execute full autonomous
flight. The UAV is then controlled automatically with the pre-defined mission path according to the
given flying altitude of 30 m and waypoint coordinates. Five flights (3 flights on 30 August 2017 and
2 flights on 28 September 2017) with different UAV mission paths have been tested (Figure 5). All
five flights were operated between 1:00pm to 3:00pm under variable cloud conditions. Out of 5, four
were planned to cover small area with low speed (7 km/h) suitable for mosaic, point cloud and sensor
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measurements purposes. The overlap is more important for the creation of point clouds than the
mosaics and along path overlap exceeded 90% while the across overlap was set to more than 60%
for accurate photogrammetric processing. A mission path (Flight 5) was designed to collect sensor
measurement and mosaic over large area (about a MODIS pixel size ~500 m) within the battery life
(about 17 min). In this survey, the relatively high speed (20 km/h), sometimes resulted in UAV’s roll
and pitch exceeding the limit (roll and pitch <3O). The cosine-response error increases as solar zenith
angle increases [14] so measurements were acquired as close as possible to solar noon. Flying altitude
is optimized to 30 m above ground level to flyover the forest as well as to sample a large footprint.
Further, a homogenous bog area was monitored from different heights under clear sky or cloudy
conditions. All the acquired data were processed following the standard processing chain described in
Section 2.3 and the land surface parameters such as total shortwave albedo from pyranometer and
visible albedo from quantum sensor were estimated.

 

Figure 5. Mer Bleue wetland in eastern Ontario near Ottawa (45◦24′34”N, 75◦31′07”W). Measurement
locations of 5 flight paths are in different colors and highlight difference in line spacing. Cyan path
(Flight 5) covers an area of approximately a 500 m MODIS pixel.

3.3. Spectrometer Albedo Estimation

Total shortwave albedo was estimated from spectrometer surface reflection measurements.
Usually, spectrometer albedo estimation underestimates surface albedo [27] because the spectrometer
cannot record the anisotropic characteristics of land surface. Since the pyranometer measures the
hemispherical reflectance and contains the information of surface anisotropy [14], albedo from
pyranometer measurements can be used to correct surface reflectance measured by the spectrometer.
The calculation of albedo from spectrometer measurements was done in four steps: (1) the ratio
of pyranometer albedo to the spectrometer reflectance (for both Green and NIR bands) within the
footprint of pyranometer was calculated; (2) the mean ratios of all pyranometer sampling points on
two dates, August 30 and September 28, were calculated; (3) the reflectance (Green/NIR) for each
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sampling point was multiplied by the mean ratio to get the spectral albedo in Green and NIR bands;
(4) the empirical equation (Equation (2)) by [28] was used to convert the spectral albedo in Green and
NIR bands to broadband shortwave albedo.

α = 0.726·αGreen − 0.322·α2
Green − 0.051·αNIR + 0.581·α2

NIR (2)

3.4. Satellite Based Albedo Estimation

Satellite-based albedo was estimated using Landsat 8 and Sentinel-2 data for comparison with
the UAV-based albedo measurements. Ten Landsat 8 [29] OLI Level 2 (L2) images throughout the
growing seasons were downloaded from earthexplorer.usgs.gov and met the requirements of being
predominately cloud-free. The Landsat 8 OLI data is of high radiometric quality and 30 m spatial
resolution. Landsat 8 L2 data are atmospherically corrected ‘Science Products’, using the Landsat
Surface Reflectance Code (LaSRC) to give surface reflectance. This atmospheric correction algorithm
differs from previous Landsat 4/5 TM data which used the 6S radiative transfer model. Isolated
cumulus clouds are visible but the images could still be used in conjunction with the UAV flights,
where the relevant pixels are cloud-free.

Sentinel-2 [30] is the newest generation Earth Observation (EO) satellite which has 13 spectral
bands with 10 to 60 m spatial resolution. This is an advantage of higher spatial and spectral resolutions
over its counterpart Landsat 8 OLI. Six Sentinel-2 Level-1C (L1C) Top of Atmosphere (TOA) images
that are closest to the time of UAV flights and with cloud cover less than 10% were downloaded from
the European Space Agency (ESA) Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/
#/home). The Sen2Cor processor was used to perform atmospheric, terrain, and cirrus correction
of the L1C product to produce the ortho-image Bottom-Of-Atmosphere (BOA) reflectance product
(Level-2A). Since not all the bands are at the same spatial resolution, all bands were atmospherically
corrected at 60 m and resampled to 30 m in order to match the spatial resolution of the Landsat images.
SNAP software was used to convert the product to a GeoTIFF.

BRDF-based algorithms for estimating broadband surface albedo/total shortwave albedo from
satellite observations involve an explicit procedure for the spectral and angular integration of
reflectance data. However, due to the narrow field of view of Landsat 8 and Sentinel-2 sensors,
it is not possible to acquire directional reflectance under different solar-view geometry and therefore
they fail to capture the anisotropy characteristics of most land surfaces [31]. Many BRDF-based
methods use external BRDF information from the 8-day 500 m MODIS BRDF model parameter product
(MCD43A1) [10] to compute the directional reflectance across all viewing and solar zenith angles,
for a given scene [32]. The integrated shortwave MODIS BRDF isotropic, volumetric and geometric
parameters were used to calculate surface reflectance at the view and solar zenith angles of each
Landsat 8 and Sentinel 2 scene [33] (Equation (3)):

A = (α/r(Ωl))·rl (3)

where A is Landsat/Sentinel narrowband albedo to be calculated, rl is observed Landsat/Sentinel
reflectance, Ωl is viewing and solar geometry of Landsat/Sentinel data, α is albedo, and r(Ωl) is the
reflectance at Landsat/Sentinel sun view geometry. Both α and r(Ωl) are derived by the MODIS BRDF
parameters [33].

The narrowband surface albedo calculated using the algorithm above is then used to calculate
total shortwave albedo using the coefficients (Equation (4)) formulated by [34]. The weights were
originally developed for Landsat 5 and 7, and converted to Sentinel-2 bands (Equation (5)) by [35],
where bn represents the sensor band number.

αLiangL8 = 0.356·ρb2 + 0.130·ρb4 + 0.373·ρb5 + 0.085·ρb6 + 0.072·ρb7 − 0.0018 (4)

αLiangS2 = 0.356·ρb2 + 0.130·ρb4 + 0.373·ρb8A + 0.085·ρb11 + 0.072·ρb12 − 0.0018 (5)

30



Drones 2019, 3, 27

Whilst the weighting functions in Equations (4) and (5) were developed for Landsat 5 TM bands,
corresponding bands over the same spectral range from Landsat 8 and Sentinel-2 data have similar
characteristics, including centre wavelength position and the full width half maximum. Nonetheless,
this may impact on the overall absolute accuracy of derived albedo products and their agreement [35].

3.5. Scaling between Observations

The field of view (FOV) specifications vary considerably between the UAV mounted camera and
sensors and the satellite sensors, which leads to differences in the measured instantaneous field of
view or ground sampling footprint. Table 1 gives an overview of the spatial resolution sampled by
the instruments.

Table 1. Field of view (FOV) and ground sampling specifications of the UAV and Satellite sensors.

UAV/Satellite Sensors Flight Altitude FOV
Ground Footprint

(Diameter)

UAV camera 30 m - 1.84 cm
UAV spectrometer 30 m 25◦ 13.3 m

UAV pyranometer/
UAV quantum sensor 30 m

180◦ – true FOV Infinite
172◦ – restricted FOV 858 m
90◦ – restricted FOV 60 m

Sentinel-2 - - 20 m
Landsat 8 OLI - - 30 m

The comparative differences between the sampling footprints for the UAV mounted instruments
versus Landsat 8 OLI 30 m pixels are shown in Figure 6. As the pyranometer FOV of 180◦, which gives
a sampling footprint reaching infinity, is not practical for comparison against other albedo products,
we use a FOV of 90◦. This FOV represents 50% of the contributing ground albedo signal [36]. The
spectrometer has a FOV of 25◦, which leads to a ground sampling footprint radius of 13.3 m and is
comparable to high-resolution pixel size (Figure 6).

Figure 6. The field of view (FOV) specifications and on-ground sampling footprint of the UAV-mounted
spectrometer (6.65 m radius) and pyranometer (30 m radius) in comparison to 30 m Landsat 8 and 20 m
Sentinel-2 pixels.
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4. Results

4.1. Orthomosaic and Point Cloud

An orthomosaic and point cloud for the Mer Bleue wetland from a mission on 28 September
2017 provides a characterization of the area (Figure 7). The orthomosaic with 1cm spatial resolution
provides information on surface texture and land cover type with high accuracy at locations where
surface albedo was measured. The point cloud contains 24.5 million points over 1.85 ha and are
visualized with natural (visible) colors and color coded for height. All points in the cloud are between
69.8 m (blue) and 75.4 m (red) above sea level (ASL). This gives detailed vegetation density and
structural information. Vegetation at the Earth’s surface has various levels of structural formation.
Open canopies (grass, marsh, open bog) generally have simple structures with leaves more or less
randomly distributed in space, whereas foliage in closed canopies (treed bog, forest) are often organized
in structures at various hierarchical levels, such as shoots, branches, whorls, tree crowns, and tree
groups [37]. This structural information is useful to understand and interpret surface anisotropic and
BRDF characteristics, which directly influence surface albedo estimates.

Figure 7. (a) Orthomosaic, (b) height above sea level and (c,d) point cloud showing land cover and
vegetation structure of Mer Bleue Bog area (28 September 2017—Flight 4).

4.2. Total Shortwave Albedo from Pyranometer

The total shortwave albedo measurements have been made using instruments such as pyrometers,
positioned either on tripods (~3 m in height) or on towers, of 20 m or greater in height [38]. With this
stable UAV system, we could measure the surface albedo at different heights (~3 m and higher). The
surface albedo measured using the UAV pyranometer is not influenced by the observation height where
the land surface is homogenous. Total shortwave albedo measurements over a homogenous bog area at
different heights under clear sky or cloudy conditions gives very consistent albedo values (Figure 8a).
Further, total shortwave albedos under clear-sky conditions and those under cloudy conditions are
almost equal and stable (see Figure 8a,b). Liang et al. [39] stated that under cloudy conditions, the total

32



Drones 2019, 3, 27

shortwave albedo is different from that of the clear-sky conditions since the spectral distributions of the
downward irradiance at the surface are different. In this study, the differences (Figure 8a,b) were found
to be insignificant, which is partially due to minimal atmospheric influences in the measurements.

  
(a) (b) 

Figure 8. Open bog total shortwave albedo (a) with changing UAV pyranometer height over
homogenous open bog under clear sky and cloudy conditions (b) from Flight 3 (30 m height)
observations over open bog while changing from cloudy to clear sky conditions.

Thus, the land cover appears to dominate the spatial variability of total shortwave albedo in the
Mer Bleue wetland, having a highest mean albedo for grass (0.2) and lowest mean albedo for marsh
(0.15) (Figure 9). The standard deviation of the five land cover classes have a standard deviation
increase with declining mean value (Figure 9). The treed bog has a lower mean albedo with higher
standard deviation compare to open bog and forest because isolated trees increase shading effect (see
Figure 7). Additionally, in some places marsh appear to be darker (see Figure 5) because of the water
level and open water gaps that brings the albedo value lowest with high standard deviation.

 
Figure 9. Mean and standard deviation of total shortwave albedo of different land cover types.

4.3. Visible Albedo from Quantum Sensor

The differences in total shortwave albedo and visible albedo from different land covers can be
resolved with some overlap present (Figure 10). Land cover with high green leaf coverage has relatively
high total shortwave albedo because of high NIR reflection and low visible albedo as the visible energy
is absorbed for photosynthesis. Marsh with dry cattails exhibits relatively high total shortwave albedo
compared to wet marsh due to the NIR reflectance as well as high visible albedo due to their low
photosynthetic activity. Some of the treed bog have low total shortwave albedo and visible albedo
values as a result of the shadow casted by isolated trees. However, based on the measurements from
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all the landcovers of Mer Bleue wetland, visible albedo from the quantum sensor is about one-fourth
of the total shortwave albedo from the pyranometer, because of the difference in spectral response
functions (see Figure 2).

 
Figure 10. Visible albedo from quantum sensor vs total shortwave albedo from pyranometer.

4.4. Hyperspectral Reflectance and Total Shortwave Albedo from Spectrometer

Measurements of vegetated land surfaces are a mixture of different components including
dominant plants, other plants, soils, water, shadows, etc [40]. Based on the surface heterogeneity
the land surfaces absorb and reflect different amounts of energy at different wavelengths that can
be characterized by their spectral response pattern. Due to the growing demand on more accurate
prediction of land surface properties for advanced models based on remotely sensed data, spectral
response pattern of different land cover types are very demanding. From the hyperspectral reflectance
measurements, one can calculate any user-defined vegetation or surface indices [41]. Indices have been
used widely for various land surface characterization, such as the Normalized Difference Vegetation
Index (NDVI) as an indicator of green biomass, the Photochemical Reflectance Index (PRI) as a
good predictor for photosynthetic efficiency or related variables [42], among others. Moreover,
hyperspectral reflectance can be converted to total shortwave albedo as described in the methodology.
A comparison between total shortwave albedo directly measured from pyranometer and that derived
from spectrometer highlights the separation and overlap in response (Figure 11).

 

Figure 11. Comparison between total shortwave albedo directly measured using pyranometer and that
derived from spectrometer.
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The difference between the total shortwave albedo from the pyranometer and spectrometer may
be because of 3 reasons: (1) spectral response function of LI-200R Pyrometer, (2) the empirical equation
(Equation (2)), which was used to derive the total shortwave albedo of vegetation from spectrometer
data, was based on a study of glaciers, and (3) difference in their FOVs. This bias is observable in
the data where the pyranometer data has higher values than the spectrometer data (Figure 11). The
pyranometer and spectrometer instruments are mounted on board the same platform; however, the
differences in their FOVs introduce variations in the ground area that is measured by each sensor. The
spectrometer-derived albedo estimates are aggregated to 60 m footprint diameter, which represents
about 50% of the actual ground albedo contribution that is measured by the pyranometer. Due to
limited spatial extent sampled during the UAV flight, it was not feasible to ‘upscale’ the spectrometer
albedo measurements to represent 80% of the pyranometer FOV (850 m) because it would have
included all spectrometer albedo ground points.

4.5. Comparison UAV-Derived Albedo with Satellite-Derived Albedo

The surface albedo estimates from Landsat 8 and Sentinel-2 satellite data with BRDF correction
have good agreement over the Mer Bleue wetland for dates closes to a UAV flight (Figure 12). Our
analysis has indicated that the Landsat 8 and Sentinel-2 albedo products demonstrate a strong linear
relationship (R2 = 0.82, not shown).

Figure 12. Spatial total shortwave albedo images (pixel coordinates) from Landsat 8 and
Sentinel-2 satellites.

Figure 13 shows a comparison between the total shortwave albedo derived from Landsat 8 and
Sentinel-2 and the total shortwave albedo from the pyranometer measurements during the flight on
28 September 2017. The Landsat 8 and Sentinel-2 albedo estimates were aggregated to match the
UAV-pyranometer footprint (90◦ FOV, 60 m diameter) for direct comparison between the two estimates.
Theoretically, FOV of the pyranometer is 180◦ and thus the footprint is infinite. However, the cosine
correction is performed for up to 82◦ of the incidence angle for Li-200R, and 50% of the signal comes
from a FOV of 90◦ and 80% from a FOV of 127◦ [36]. Therefore, as the average height of the UAV flight is
30 m, 50% of the signal to the downward-facing pyranometer comes from a footprint diameter of 60 m,
which is used for the comparison. Data points acquired during cloudy periods were excluded from the
analysis, because, variable cloud presence may lead to shadows cast on the ground-based pyranometer,
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which may lead to low measurements of downward irradiance. This results in erroneously increase
albedo calculated from the ratio of the upwelling to the downwelling irradiance.

  
(a) (b) 

Figure 13. Comparison between satellite-derived albedo using the BRDF-based approach for
(a) Landsat 8, and (b) Sentinel-2 sensors, against directly measured albedo from pyranometer.

There is a relatively strong relationships between satellite-derived albedo and directly measured
albedo from the pyranometer, across all land cover types (Figure 13; R2 = 0.73 for Landsat 8 and R2 =
0.68 for Sentinel-2). There is a linear bias with satellite-derived albedo underestimated by 20% relative
to the values from the pyranometer. The spectral response function of the pyranometer, bias in the
satellite-derived albedo estimation and FOVs could explain this (see Sections 5.3–5.5).

The satellite-derived albedo is compared to spectrometer-derived albedo (Figure 14). The
spectrometer-derived albedo is derived at ground sampling footprints of 13.3 m in diameter, and
the Landsat 8 and Sentinel-2 albedo estimates are for the original satellite resolutions of 30 m and
20 m, respectively. The results are for the UAV data sampled during the September 28th flight. The
satellite-derived albedo estimates and the spectrometer-derived albedo scattered along the 1:1 line.
Variations in the relationship between the satellite-derived and spectrometer-derived albedo estimates
may also arise from differences in the band characteristics and the spectral range that reflectance data
are collected over. Most notably, the spectrometer lacks two SWIR bands that the two satellite sensors
possess, which led to a different method used for spectrometer based albedo estimates.

  
(a) (b) 

Figure 14. Comparison between satellite-derived total shortwave albedo using the BRDF-based
approach for (a) Landsat 8, and (b) Sentinel-2 sensors, against spectrometer-derived total
shortwave albedo.
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5. Discussion

5.1. Operational UAV Concerns

The UAV sensor system has the potential to characterize a land surface, however, field data
acquisition with the UAV sensor system faces several minor challenges such as: limited battery life;
slow flight to maintain flight stability; calibration requirements; synchronizing UAV and all the sensors
of the UAV and the ground system; and acquiring required permits. Further, the weather conditions
such as wind and temperature need to be suitable for stable flight and sensor measurements. Variable
clouds could affect the consistencies in the radiation environment between the actual footprint of the
UAV sensors and the ground station sensors.

5.2. Issues Related to Mini-Sensors

Compared to standard commercial pyranometers and hyperspectral sensors, small sensors are
lightweight, generally more easily mounted on UAV, easily replaced, and cost effective, which allows
us to use multiple sensors. We expected some variation between sensors. For example, Li-Cor
sensors do not have spectral response function for each individual sensor. However, we performed an
inter-comparison between the identical sensors by measuring variable downwelling irradiance at the
same time and the result had very good 1:1 correlation. Another issue is that the spectral reflectance
of VNIR is from 2 sensors, VIS and NIR, middle portions of the spectrum avoiding the edges from
two sensors were merged together. SWIR measurements are useful for various application mainly for
estimating total shortwave albedo. But, Ocean optics does not produce small SWIR sensor suitable
for UAV.

5.3. Spectral Response Functions

The Li-Cor pyranometer is small in size and mass, however, the limited spectral sensitivity
(400 nm to 1100 nm) of the pyranometer is a disadvantage [43]. In the case of snow, the Li-Cor 200SZ
reflected radiation data with a positive bias when compared to standard optical black thermopile
instruments that have a nearly uniform response in the full ultraviolet to infrared (285–2800 nm)
range [43]. Whilst the Li-Cor pyranometer samples broadband reflectance, rather than in discrete
narrow bands, its spectral response function has a higher contribution of sampled irradiance from NIR
(Figure 2). However, even more importantly, the pyranometer only measured visible-NIR wavelengths
and does not cover SWIR region. This may have a disproportionately high effect if there are variations
in vegetation or soil water content between land covers, or over space and time. In only sampling to
the NIR, this implies an inherent assumption that there will be little variation across the remainder
of the solar spectrum. This uncertainty in the total surface albedo measurements could be one of the
main sources of linear bias in the results, with satellite-derived albedo underestimated, relative to the
pyranometer results.

5.4. Satellite Based Albedo Estimation

There are a number of well-used empirical coefficients that have been used to convert satellite
measured spectral reflectance or radiance into total shortwave albedo [34,44]. However, most of the
empirical equations (including Equations (4) and (5)) are based on wide range of albedo data from
various landcovers with different shape of spectral reflectance, compared to the vegetation cover in the
study are. Further, these empirical methods sometimes neglect to take into consideration the surface
anisotropy of the land cover present. Naegeli et al. [35] found that surface anisotropy accounts for an
underestimation of albedo of up to 10%, depending on the surface type. Darker surfaces are more
sensitive to anisotropy correction compared to brighter surfaces [35]. Furthermore, the time of data
acquisition may also lead to uncertainties in the retrieved albedo product [14].
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5.5. Field of View

In previous studies, validation of satellite-retrieved albedo using directly measured albedo from
radiation sensors was usually conducted with fixed, ground or tower-mounted instruments [38].
The novel use of an on board, UAV-based sensors allows direct albedo measurements in a
spatially-continuous manner and provides opportunity to validate satellite estimates using more
validation points and, importantly a variety of land covers. Other than that, by averaging multiple
UAV-derived albedo values within one pixel of remote sensing image, the issue of upscaling from point
measurement to the pixel level can be alleviated. In this case, 50% of contributions to the pyranometer
albedo are coming from outside of the 60 m diameter footprint that is compared with aggregated
Landsat 8 and Sentinel-2 60 m pixels. Greater uncertainty and error will arise when this is within a
heterogeneous landscape, and particularly in landscapes where the albedos from different land covers
are very different from each other, such as treed bog adjacent to open bog.

6. Conclusions

This research evaluated the use of a UAV-system for deriving and monitoring surface albedo
over a wetland ecosystem for operational hydrological monitoring at fine spatial-scales and short
temporal intervals. Pairs of low-cost and lightweight VIS and NIR spectrometers, pyranometers and
quantum sensors were used on the ground and on the UAV for measuring downwelling irradiance
and upwelling radiance, respectively. Videos from UAV mounted camera was used for extracting
land surface structural information and reflectance from spectrometers were used for categorising
land surface spectral characteristics. Comparison of total shortwave albedo from spectrometers and
total shortwave albedo from pyranometer, allowed quantitative evaluation of the direct albedo from
pyranometer against Landsat 8 and Sentinel-2 derived albedo. There were relatively little differences in
total shortwave albedo derived from Landsat 8 and Sentinel-2 images, likely due to their similar spectral
response functions and spatial resolution, with both satellite results having a strong performance
with direct total shortwave albedo measurements from UAV pyranometer (R2 = 0.73 and R2 = 0.68,
respectively). However, there is a 20% underestimation that could be due to limited spectral range of
LI-200R, generalized use of empirical satellite albedo retrieval equations, and/or the restricted 50%
pyranometer FOV that is used for comparison with the satellite pixels. This study demonstrates the
potential of a UAV platform for bridging the gap between fixed point, in-situ albedo measurements
and pixel-level measurements by satellites, for producing accurate, time sensitive and fine-scale
spatially continuous albedo measurements for hydrological monitoring over sensitive and dynamic
wetland environments.
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Abstract: Park managers call for cost-effective and innovative solutions to handle a wide variety of
environmental problems that threaten biodiversity in protected areas. Recently, drones have been
called upon to revolutionize conservation and hold great potential to evolve and raise better-informed
decisions to assist management. Despite great expectations, the benefits that drones could bring
to foster effectiveness remain fundamentally unexplored. To address this gap, we performed a
literature review about the use of drones in conservation. We selected a total of 256 studies, of
which 99 were carried out in protected areas. We classified the studies in five distinct areas of
applications: “wildlife monitoring and management”; “ecosystem monitoring”; “law enforcement”;
“ecotourism”; and “environmental management and disaster response”. We also identified specific
gaps and challenges that would allow for the expansion of critical research or monitoring. Our results
support the evidence that drones hold merits to serve conservation actions and reinforce effective
management, but multidisciplinary research must resolve the operational and analytical shortcomings
that undermine the prospects for drones integration in protected areas.

Keywords: protected areas; drones; RPAS; conservation; effective management; biodiversity threats

1. Introduction

Protected areas aim to safeguard biodiversity, preserve ecosystem services and ensure the
persistence of natural heritage [1]. Despite their essential role in conservation, the allocation of
resources to cope with an increasing variety of regular activities and unforeseen circumstances remains
generally insufficient [2], severely affecting overall effectiveness [3]. Besides, protected areas subjected
to international and national agreements must resolve their acquired responsibilities to maintain their
legal status [4]. Hence, there is a demand for cost-effective, versatile and practical initiatives to attend
a disparity of requirements to guarantee conservation, including a wide range of natural solutions [5],
technological advances, and methods or innovative application of existing technologies [6].

In the last decade, drones (also known as unmanned aerial systems, remotely piloted aircraft
systems, RPAS, UAS, UAV) have been the subject of a growing interest in both the civilian and
scientific sphere, and indeed avowed as a new distinct era of remote sensing [7] for the study of the
environment [8]. Drones offer a relatively risk-free and low-cost manner to rapidly and systematically
observe natural phenomena at high spatio-temporal resolution [9]. For these reasons, drones have
recently become a major trend in wildlife research [10,11] and management [12–14].

The success of drones can be partially explained by their great flexibility to carry different
sensors and devices. The scope of application determines the best combination of aerial platform and
payload. Although drones come in many different shapes and sizes, widespread small fixed-wing
and rotary-wing aircrafts are frequently used for video and still photography. These consumer grade
drones coupled with lightweight cameras and multispectral sensors can deliver professional mapping
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solutions at a fraction of a cost than previous photogrammetric techniques. Medium size drones
can be equipped with compact thermal vision cameras, hyperspectral sensors and laser scanning
such as LiDAR, with great prospects for wildlife ecology, vegetation studies and forestry applications
respectively [15–17]. Even though visible and multispectral band cameras encompass the most obvious
sensing devices, drones can indeed incorporate a diversity of instruments to measure many distinct
physical quantities such as temperature, humidity or air pollution [18]. Additionally, large aerial
platforms can lift heavier payloads and represent an appropriate solution for integrating complex
systems with the capacity to remotely assist sampling, hold cargo or deliver assistance. A brief
summary of platforms and sensors is given in Tables 1 and 2 (but see [19–22] for an in-depth revision).

Table 1. Classification of drones according to characteristics and applications.

SIZE 

Nano 
<30 mm 

Micro 
30–100 mm 

Mini 
100–300 mm 

Small 
300–500 mm 

Medium 
500 mm–2 m 

Large 
>2 m 

Maximum Take-Off Weight (MTOW) 

<0.5 Kg 0.5–5 Kg 5–25 Kg >25 Kg 

RANGE (Distance/Type of Operation) 

Close-range <0.5 miles Mid-range 0.5–5 miles Long-range 5 > miles 

Visual Line Of Sight (VLOS) Extended Visual Line Of Sight (EVLOS) Beyond Visual Line Of Sight (BVLOS) 

WING 

Rotary wing Fixed wing 
Hybrid 
(VTOL) 

Single
Dual 
rotors 

Multi-Rotor 
Low 
Wing 

Mid 
Wing 

High 
Wing 

Delta 
Wing Tricopter Quadcopter Hexacopter Octocopter 

POWER 

Electric Gas Nitro Solar 

ASSEMBLING 

Ready-To-Fly (RTF) Bind-N-Fly (BNF) Almost-Ready-to-Fly (ARF) 

APPLICATIONS 

Logistics 
Civil 

Engineering 
Disaster 

Relief 
Heritage 

Search 
and 

Rescue 

Precision 
Agriculture 

Natural 
Resources 

Law 
Enforcement 

Wildlife 
Management 

Weather 
Forecasting 

Industrial 
Inspection 

Leisure Military 
Disaster  

Relief 

Aerial 
Photography 

and Film 
Archeology 

Note: SIZE, MTOW and RANGE: based on average values (no specific standard/regulation). ASSEMBLING: level
of work required to use the drone since acquisition.

Considering the ample range of possibilities, it is not surprising that some protected areas are
adopting drones for various applications. For example, to assist search and rescue [23]; protect
endangered turtles from feral species [24]; monitoring invasive plant species [25]; document illegal
logging and mining [26]; wetland management [27]; anti-poaching [28]; and marine litter detection [29].
Recently, a team of scientists discovered a biodiversity hotspot using drones [30], which could be
argued as a convenient procedure to adequately expand protected areas as established by the Aichi
Target 11 [3]. In addition, we are witnessing a continuous development of sophisticated drones and
ingenious methods that target particular conservation actions, such as wildfires firefighting [31]; whale
health monitoring [32]; disease vectors control [33]; or seed planting for habitat restoration [34]. The fast
pace of technological advances and novel applications probably exceeded previous expectations, but
also gives rise to singular circumstances that must be placed in the context of management.
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Table 2. Summary classification of sensors and devices that can be coupled to drones.

Instrument. 
Type of  
Sensor 

Spatial  
Resolution 

Spectral  
Resolution 

Weight Costs 

Imaging  
sensors 

Visible RGB Passive 
Very high 

1–5 cm/pixel 
Low 

(3 bands) 
Low  

<0.5 kg 
Low 

$100–1000  

Near Infrared  
(NIR) 

Passive 
Very high 

1–5 cm/pixel 
Low 

(3 bands) 
Low  

<0.5 kg 
Low 

$100–1000 

Multispectral Passive 
High 

5–10 cm/pixel 
Medium 

(5–12 bands) 
Medium 
0.5–1 kg 

Medium 
$1000–10,000  

Hyperspectral Passive 
High 

5–10 cm 
High 

(> 50–100 bands) 
Medium 
0.5–1 kg 

High 
$10,000–50,000 

Thermal Passive 
Medium 

10–50 cm/pixel 
Low 

1 band 
Medium 
0.5–1 kg 

Medium 
$1000–10,000 

Ranging  
sensors 

Laser scanners  
(LiDAR) 

Active 
Very high 

1–5 cm/pixel 
Low 

1–2 bands 
High 

0.5–5 kg 
High 

$10,000–50,000 

Synthetic Aperture  
Radars (SAR) 

Active 
Medium 

10–50 cm/pixel 
Low 

1 band 
High 
>5 kg 

Very high 
>$50,000 

Other sensors and devices 

Atmospheric sensors Temperature, Pressure, Wind, Humidity 

Chemical Sensors Gas, Geochemical 

Position systems Ultrasound, Infrared, Radio Frequency, GPS 

Other devices Recorder device/microphones 

Sampling Devices Water, Aerobiological, Microbiological Sampling 

Other devices Cargo, Spraying, Seed spreader 

Some authors have identified negative aspects of drones use in conservation. Potential wildlife
disturbance effects [35] need to be further investigated. The use of drones as tools of coercion could
weaken the environmental commitment of communities in protected areas [36], and therefore may
prove counterproductive for conservation. On the other hand, the massive amount of data acquired
with drones require modern, robust and computationally intensive methods to derive accurate and
meaningful information [37], which may represent a technological barrier to the effective use of this
technology in protected areas.

Likewise, the connection of drone advances with the most important features guiding effective
management has not yet been specifically weighted and would be necessary to better align research
efforts to conservation priorities. In addition, whether decision makers can take practical advantage of
present and oncoming advances in the discipline remains questionable for several reasons. To find
early answers to these remarks, we conducted an extensive literature review of drone applications
with potential to enhance the effective management of protected areas. This perspective may help
identify plausible scenarios where drones can be used in a rational and efficient manner.

2. Methods

We conducted a comprehensive literature search on drones in conservation up to October 2nd
2018, in line with related studies [10,11,35]. All searches were done by the same person in English,
mainly using Google Scholar. This was further complemented through reference harvesting, citation
tracking, abstracts in conference programs, and author search, using Research Gate and Mendeley (see
PRISMA Flowchart in Supplementary Figure S1 Checklist and list of studies reviewed in Table S1).
We then removed duplicate and unrelated results. Finally, peer-reviewed publications were collated
and revised.

Keywords on the search included drones in their various meanings and acronyms: “unmanned
aircraft systems”, “UAS”, “remotely piloted aerial system”, “RPAS”, “drone”, “model aircraft”,
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“unmanned aerial vehicle”, “UAV”, “unmanned aircraft system”. These were combined with terms
referring to threats and common conservation measurements in protected areas: “protected area”,
“conservation”, “ecology”, “ecosystem”, “habitat”, “vegetation”, “forest”, “wetland”, “reforestation”,
“monitoring”, “survey”, “sampling”, “inventory”, “wildlife”, “fauna”, “bird”, “mammal”, “fish”,
“amphibian”, “reptile”, “wildfire”, “landslide”, “remote sensing”, “tourism”, “ecotourism”, “law
enforcement”, “poaching”, “anti-poaching”, “logging”, “risk management”, “pollution”, and “search
and rescue”. In total, we applied 47 search terms and combinations using logical disjunctions.

We classified the studies into categories that represent the common threats and essential
management measures in protected areas [5,38–40]. The categories are: “wildlife research and
management” for those projects aimed at observing wildlife, estimating population parameters such
as abundance and distribution, and establishing management measures to mitigate human-wildlife
conflicts (n = 96); “ecosystem monitoring” for applications related with the study and mapping of
natural habitats (n = 106); “Law enforcement” encompassing poaching and other illicit activities (n = 6);
“Ecotourism" referring to recreational activities and visitors management (n = 3); “Environmental
management and emergency response" spanning environmental monitoring and protection, natural
hazards, search and rescue operations and similar cases (n = 45). We briefly tackled legal and ethical
issues, including potential impact on wildlife and habitats, but also economic and technological factors,
since all shape the feasibility of drones to approach conservation and environmental issues.

3. Results and Discussion

The literature search on drones in conservation provided a total of 256 studies. Of these, 99
describe applications that were accomplished in terrestrial and marine protected areas, according to
the Protected Planet database [41]. The typology of protected areas includes national, international
designations and registered private initiatives, with all UICN management categories (Ia, Ib, II, III, IV,
V, VI) represented [1]. We found examples on all continents and in most ecosystems. The United States
of America lead the ranking of countries where more drone studies have taken place (45), followed
by Canada (26), Australia (17), China (11), Germany (11) and Spain (9). Figure 1 summarizes the
selected research.

Figure 1. Cont.
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Figure 1. (A) Blue points represent studies in protected areas. Choropleth map shows location of
studies by country. No studies were collected in countries colored black. (B) Only studies where type of
platform was identified are shown. (C) Information extracted from WWF Terrestrial Ecoregions
Map [42]. No drone studies were found in Protected Areas with Tropical and subtropical dry
broadleaf forests.

The classification of the studies in categories that align with recurring aspects of conservation
and management in protected areas [43] provides a framework that may help park-managers to
identify feasible drone scenarios. The factors influencing effectiveness can be conveniently ascribed
to the proposed categories and associated with consensual conservation actions [44]. In the next
sections, we discuss the current state of the art and the challenges for the future integration of drones
in protected areas.

3.1. State of the Art: Drones in Protected Areas

3.1.1. Wildlife Research and Management

Manned aircrafts have been traditionally used to complement ground-based wildlife surveys,
but under-resourcing of many protected areas prevent their more widespread use. Besides, a
significant number of aerial accidents with fatalities have been historically reported [45]. Moreover,
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aerial incursions are subject to visibility bias since a greater number of observers is required to
guarantee an exhaustive count of populations and minimize errors [46]. Drones have emerged as a
feasible alternative to surpass such inconveniences at small scales and complement modern wildlife
conservation. Remotely sensed capabilities of drones offer a less invasive, non-hazardous, repetitive
and reliable monitoring technique [47] to collect species abundance and distribution, document wildlife
behavior, life-history and health status. Recent examples target terrestrial mammals [48–50]; marine
mammals [51–55]; birds [11,56–60]; reptiles [15,61–64]; and fish [65,66]. Most surveys opted for both
optical and thermal cameras, the latter especially appropriate to sense elusive species overnight,
when the temperature differences between the animal body and the environment are greater [67].
Other studies implemented acoustic sensors to record songbirds [68] or combine drones with tracking
systems aboard [9,69,70] to collect wildlife movement and environmental data. Researchers have also
devised ways to use drones for insect monitoring [71], habitat modeling [72] and sampling [73].

Protected areas often face human-wildlife conflicts in populated areas bordering their limits [74].
Some studies described the use of drones in various management tasks, such as moving elephants out
of human settlements [75], mapping wildlife damage on crops to calculate compensation costs [76] or
dropping fake baits targeting feral species [77]. Drones constitute an attainable low-cost alternative
to assess and reduce the risk that hazardous infrastructures [78,79] or mechanical harvesting [80,81]
pose to wildlife. Lastly, fine-scale mapping of species distribution, land-use changes and water
bodies using high resolution aerial imagery hold potential to complement epidemiological and
zoonotic studies [82–85], and may serve as a rapid mechanism to inform prevention and reinforce
biosecurity programs.

3.1.2. Ecosystem Monitoring

Protected areas are reference sites for ecological monitoring. These activities provide essential
information to track ecosystem changes as a result of management and environmental factors [86].
Established methods for habitat monitoring range from in situ and airborne observations to
satellite-based remote sensing. The latest generation of commercial satellite sensors [87] collect
images at sub-meter resolution and entail remarkable technological advances to Earth observation,
but the geographical availability of products is limited and not always rapidly available. Drones are
particularly appropriated to timely survey small areas at unprecedented detail [88], could be adapted
to carry sampling devices and take in-situ measurements [89], and may prove advantageous to monitor
Essential Biodiversity Variables (EBVs) [90]. Similarly, mapping and quantifying ecosystem services
with drones constitute an efficient means to inform site design and zoning, especially when the
information available is scarce, outdated and based on coarse-resolution remote sensing images. Also,
monitoring habitat degradation with drones in protected areas and borderlands [91,92] represents a
novel method to assess the performance of conservation actions. Finally, fine-scale habitat assessment
using high resolution maps could assist, selecting suitable reintroduction sites for endangered or
locally extinct species [93].

Experimental drone monitoring projects have increased noticeably, both by governmental
institutions [94] and research groups, for informing on the distribution [95], health [16,96],
productivity [97], composition [98], structure [99,100] and biomass [101–104] of forests using both
passive and active sensors [105]. As a consequence, drone applications for inventory, characterization
and habitat restoration are maturing fast, but scaling-up and linking the collected information
with that coming from satellite remote sensing remains a knowledge gap [106]. However, some
studies represent a step in this direction, including the following: derive and enhance ground-based
forest metrics to assist modeling of ecological process at regional scale [107], validate vegetation
maps from drone image interpretation [108,109] or address the radiometric calibration of small
multispectral cameras to allow comparisons with satellite data [110,111]. Drones have been used
for community-based forest monitoring [112], and therefore suggested as an important asset to
impulse the participation of developing countries in the carbon market (Reducing Emissions from
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Deforestation and Forest Degradation, REDD) [113]. In addition, drones have operated successfully
in different ecosystems to measure the spread of invasive species [114–118]; map coastal and marine
habitats [119–125]; wetlands [126–130]; grasslands [17,131,132]; savannas [133,134]; glaciers [135–137];
polar areas [138,139]; and riparian ecosystems [140–143].

3.1.3. Law Enforcement

Efficient control and surveillance of illegal activities lead the ranking of measures for effective
management of terrestrial [144] and marine [145] protected areas. These conservation actions aim
to maintain the integrity of threatened species and ecosystems in the face of human pressures, but
in practice suffer from serious deficiencies [146]. Enforcement is especially challenging in large
protected areas where iconic species are on the verge of extinction due to illegal hunting, fishing,
encroachment or habitat loss. Drones constitute a technological advance to complement insufficient
staff and resourcing in anti-poaching [12,147–149] and other less contentious acts such as vandalism
or bonfires in unauthorized areas [150,151]. Drone surveillance aim to autonomously detect and
track subjects integrating live streaming visible and thermal camera systems with real time vision
processing techniques. However, these applications are subjected to technological and legal constraints.
Real-time recognition of suspicious activity or flying in adverse weather conditions remain a work in
progress [152]. The relatively low maximum flight time of modest drones is a major obstacle to cover
large areas [12], but progress is noticeable. Although the last generation of long-endurance fixed-wing
and hybrid aerial platforms have higher autonomy, meeting the optimal specifications requires
a considerable investment [153] with uncertain benefits, especially in developing countries [154].
Besides, the main barriers to protected areas surveillance using drones take place in the legislative
and socio-political sphere. The flight rules often limit flying drones beyond the visual line of sight
(BVLOS), above a certain altitude or at night, precluding the surveillance in periods of increased illegal
activity. On the other hand, there are concerns about the alleged social and ethical implications of
using drones with coercive purposes [155]. Duffy debated the advent of militarized conservation
and stated that drones and similar technologies could contribute to human rights breaching [156],
which may lessen the commitment of native communities [36,157] to protect their natural resources.
Under these considerations, more research is needed to identify those technological advances and best
practices that do not pose or minimize the risk to the privacy and welfare of people but serve for the
purpose of surveillance. In this sense, thermal images reveal the temperature profile of the target, but
lack the ability to collect sensitive personal information. Other measures can be taken to restrict the
surveillance to previously defined zones and according to poaching threat maps [158] representing
those areas with greatest pressures. In addition, some studies have remarked that the effectiveness
of antipoaching depends on a greater allocation of resources [144]. For example, to improve the
effectiveness of offshore guarding activities [159], patrol vessel could acquire waterproof rotary-wing
or fixed-wing drones with float planes to persuade and record illegal fishing within the boundaries
of marine protected areas. These evidences could be considered a reliable proof in court, even when
offenders are seized outside the no-take zones [160]. Alternatively, there are some reported experiences
where drones assisted counter-mapping with reasonable success [161,162]. With all due caution, these
are some compelling reasons to encourage the development and implementation of drones to fight
poaching. Nevertheless, the success of such initiatives might require a greater consensus among the
parties involved and the development of multidisciplinary strategies that seek to solve these recurrent
threats to biodiversity.

3.1.4. Ecotourism

Well-managed ecotourism promotes conservation and provides socioeconomic benefits to local
communities. Otherwise, it may adversely affect the welfare of the animals and disrupt their
habitats [163]. In the midst of the dilemma, drones have been proposed for recreational and
educational purposes [164,165], document natural monuments and cultural sites [166]; and social
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research and visitor surveillance [167,168]. However, drone operations are susceptible to endanger
wildlife [35], compromise tourist experience [153] or in case of accidents, lead to pollution or wildfires
in sensitive areas due to the presence of toxic and flammable components. Subsequently, to restrain
the uncontrolled presence of drones in protected areas, stakeholders agreed on a set of policies to
establish permitted activities in Antarctica [169], opted for simpler rules and recommendations [170] or
completely banned drones arguing safety reasons and wildlife impact [171]. Even when the economic
benefits and leisure possibilities are promising, undesirable events and a lack of ethical practices could
emphasize the negative connotations of drones to the detriment of their advantages. Thus, it would
be advisable to be cautious in the face of a growing demand to incorporate drones into ecotourism
services and continue working on a set of consensual measures to minimize the potential drawbacks
drones may bring to protected areas.

3.1.5. Environmental Management and Disaster Response

Effectively managing protected areas requires continuous monitoring of environmental
biophysical indicators to ensure that potential sources of contamination are controlled or below
a safety threshold and, if necessary, take appropriate restoration measures. In many cases, a rapid
response is crucial to diminish the effects that natural and man-made disasters pose to natural resources
and human beings. Usually, these conservation actions combine fieldwork, airborne and satellite
remote sensing. Drone capabilities provide a fine-scale alternative to remotely assist water, soil
and air quality sampling [172–176], and enable rapid image acquisition to monitor erosion [177];
sediments dynamics [178,179]; forest windthrow [180]; habitat degradation [125]; landslides [181–183];
flood [184]; volcanic events [183,185,186]; oil spills [187]; and wildfires [188–190] at different stages.
Drones may also serve as valuable tools for rangers in search and rescue missions in marine and remote
mountainous regions [191,192]. Besides, there are a variety of plausible scenarios where drones can
prove to be useful, such as detecting marine litter [193–195], inspect facilities [196]; collect information
gathered from environmental sensor networks [197]; or support plant invasion monitoring [198] and
control by means of aerially deployed herbicide on targeted species [199].

3.2. Current Challenges on the Integration of Drones in Protected Areas

3.2.1. Legal Barriers and Ethical Constraints

Drone operations face important social and legal barriers that undermine their potential in the
civilian sphere [36,200,201]. Not without founded reasons, an overly restrictive and indiscriminate
regulatory framework arguing privacy and safety issues is currently limiting the applications of drones
in the field of conservation. This highlights the urgent need to seek consensus among countries and
adapt legislation to distinguish between the purpose of leisure, research and management [202].

3.2.2. Impact of Drones on Wildlife and Ecosystems

Animal welfare and alteration of sensitive habitat in wildlife management and ecological research
is a source of strong debate [203,204]. Some authors have reported disturbance effects of drones
on birds [57,205–209], reptiles [210] and mammals [211–213]. Despite a greater degree of awareness
reflected in a emergent set of guidelines to minimize the impacts on wildlife [35,56,214,215], most
studies marginally inform reactions and further trials aimed at quantifying changes in behavioral
patterns and physiological effects targeting a broader group of species is recommended. An optimal
trade-off between benefits and environmental costs should be weighed [216,217]. By designing quieter,
non-polluting and safer components, along with following up the suggested flight patterns, the
impact on wildlife and ecosystems could be reduced and its objective and unbiased observation
facilitated [47,204]. Therefore, drones have great potential to evolve, replacing more invasive
monitoring techniques. This should be consciously considered by those reluctant to integrate drones
in research and conservation activities. Step by step, a code of best practice and recommendations
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could be continuously updated based on lessons learned [206], forming the basis for wildlife certified
drone operators [35].

3.2.3. Costs of Drone Operation

Expenses derived from using drones in the long term are difficult to quantify [218] and depend on
a confluence of factors. Some of the applications described above rely on the acquisition of sophisticated
on-board instruments, devices and sensors, advanced communications system or gas-powered engines
for longer endurance and heavier payloads. The large volume of data collected must be conveniently
stored and processed, which often require qualified staff and adequate IT (Information Technology)
infrastructures. In addition, operations with drones are not exempt from accidents, which may
compromise the viability of some projects. The payload is usually the most expensive part of the
platform, and this often breaks down. Park managers should be aware that there is not a single solution
covering all the conservation purposes [219] and a trade-off analysis among available platforms and
sensors should be pondered. In this regard, do-it-yourself (DIY) drones can be equipped with a
flexible array of sensors and according to very specific requirements, but extra time and experience
is required for the correct assemblage and configuration of parts. Since ready to fly commercial
platforms are tested and proven systems, it could be argued that they present more reliable capabilities
than custom-built drones. Moreover, the consumer market shows a gradual drop on prices in higher
performance platforms [220]. Suppliers often provide support, training and companion software, albeit
services could be occasionally charged. Nonetheless, there is general agreement that costs associated
with drones are lower compared to established methods (Table 3), such as manned aircraft and ground
incursions [13,178,211], at least for mapping small and medium scale areas. Although the benefits of
monitoring greater extensions with drones remain challenging according to the state of the art, the
situation is likely to be more favorable with the advent of more efficient aerial platforms.

Table 3. Examples of studies reporting favorable use of drones compared with established methods.

Study Aim Established Methods Using Drones

[173] Water Sampling

Boat sampling

• 3 scientists, 1 boat, 1 truck, 1 trailer.
• Slow, spatially restricted.
• Expensive and laborious deployment
• lake sampled/10–15-h day.

• 2 h, 1 scientist, 1 drone.
• Sample all lakes at very high

spatio-temporal resolution.

[57] Nesting status of birds

Climbing trees

• 2500$
• 2 people and climbing gear.
• 33 min/inspection

• 1000$
• 1 person and drone
• 4:30 min/inspection

[57] Elasmobranchs densities

Fishing methods, diver surveys, video cameras,
aerial surveys

• Potential invasive methods
• Prohibitive cost.
• Risk for observers and observer bias.

• <2500 $
• Short period of time.
• True densities

[61] Crocodile nesting behavior

Helicopter, airboat, ground surveys

• Prohibitive cost.
• Dangerous incursions.

• Low cost, repeatability,
and flexibility

[221] Mangrove forest inventory

Fieldwork

• Laborious and costly
• Trade-off sample size and frequency
• Located in remote areas.
• Disturbance of fauna and flora

• Consumer-grade drone 1200 $
• Above ground biomass estimation.
• Increase sampling frequency
• Less invasive
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3.2.4. Technological Challenges

As previously noted, the massive volume of data that sensors collect in the course of the surveys
need to be stored, processed and analyzed, causing severe procedural bottlenecks [6] that need to
be solved. When using aerial images for wildlife census, the manual counting and identification of
individuals represent a considerable investment in time and costs. Progress in computer vision and
machine learning are intended to automate such routine tasks [52,81,222–228]. Despite encouraging
results [229], these methods are only available for relatively easy to spot species in open natural
environments and require highly qualified personnel to offer reliable results. In addition, further
research is required to assess the overall performance of drone data collection techniques to address
the analysis and modelling of species distribution, especially in comparison with more mature
statistical and sampling methods [58]. On the other hand, traditional pixel-based algorithms are
rather inefficient when processing very high resolution images [128]. Therefore, object-based image
analysis (OBIA) and deep learning techniques [230] will likely prevail during the next generation of
land-cover, habitat and vegetation classification methods [8]. The arrival of affordable hyperspectral
miniaturized sensors [124,128,231,232], will bring more complexity to the matter, requiring novel
analytical approaches not currently implemented. Conversely, the entire photogrammetric process is
well documented [233] and supported by commercial desktop and mobile applications, but also open
source solutions [21], probably at expense of a major level of expertise [234,235]. Drones using Real
Time Kinematic (RTK) and Post Processing Kinematic (PPK) techniques can produce survey-grade
maps without requiring labor intensive ground control points (GCPs). Yet, the radiometric calibration
of aerial images requires additional improvements [37] since it is considered a crucial step to carry out
multi-temporal studies [236]. The confluence of big data [237], networked drones [238,239], artificial
intelligence and sensors will bring new unforeseen perspectives to conservation, but integration of
products and services to deliver off-the-shelf management solutions are still in their infancy.

3.3. Linking Drone Platforms and Sensors with Conservation

Park managers considering the acquisition of drones may need expert guidance to select the most
suitable platform and sensor for each purpose. Here we provide a brief summary of most common
imaging and ranging sensors (Table 4). Consumer grade cameras are adequate for general mapping
and photogrammetric tasks. Sensor size, focal length and lens quality are the main camera factors that
influence the accuracy of the survey. More advance remote sensing applications require the adoption
of multispectral and hyperspectral sensors. The former encompasses both modified RGB cameras
to near infrared and multispectral cameras with great prospects for precision agriculture, forestry
and a broad range of vegetation studies [240]. Hyperspectral sensors collect information in multiple
bands across the electromagnetic spectrum, and are of great interest to remotely observe the spectral
response of many distinct biophysical parameters [22] and physiological process of organisms [124].
These families of sensors require radiometric calibration to account for variable lighting conditions
and retrieve physical quantities that can be compared in time and with other sensors [241]. Thermal
infrared cameras can remotely sense heat even in low visibility conditions and are ordinarily used
for industrial inspection and surveillance, but also in soil science [242] and animal ecology [64].
Thermal sensitivity, expressed as the ability of the sensor to discriminate differences of temperatures
even in low contrast scenes, is one of the most important technical aspects to increase the detection
rate of wildlife [52]. LiDAR instruments are relatively expensive active sensors that can penetrate
the canopy and derive accurate three-dimensional forest metrics and terrain models. However,
structure-from-motion (SfM) [243] imaging techniques based on standard RGB cameras represent
a low-cost alternative with limited, but reasonable results. In terms of platforms, long-endurance
fixed-wing drones are preferred when surveying large areas and when landing is not a problem.
Conversely, rotary-wing platforms are more versatile, and can operate in a diverse range of situations
where precise flights prove more advantageous, such as in confined spaces and close-range inspection
tasks, marine settings and terrestrial areas with steep terrain, or extensive vegetation cover.
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Table 4. Suitable sensors for research and management tasks.

Sensor Applications

Visible RGB Aerial photography, habitat mapping, photogrammetry, 3D Modeling,
inspection, wildlife surveys (identification), landslides

Multispectral Vegetation indices, productivity, water quality, geological surveys

Hyperspectral Vegetation studies, biophysical variables, ecological processes, forest health,
chlorophyll content, insect outbreaks.

Thermal Inspection, wildlife surveys (detection), surveillance, wildfires, soil temperature,
volcanology

LiDAR 3D Modeling, topographical maps, forest inventory and metrics
(structure, biomass, tree volume, canopy height, leaf area index)

3.4. Knowledge Gaps and Recommendations for Future Research

The variety of information gathered from drones represents a great opportunity to complement
ongoing Earth Observation programs aimed to monitor anthropogenic pressures threatening the
ecological integrity of protected areas [244]. Drones can be rapidly deployed there, where early
sign of disturbance have been previously detected using satellite images and environmental sensor
networks [245]. Although many protected areas are too large to be mapped using drones, there are
small, inaccessible and environmentally sensitive terrestrial and marine areas (ESAs) with important
ecological values that could take advantage from drones. Once the use of drones has proven feasible in
many different fields of application, it would be of interest that research focuses on methods to produce
a set of ecological indicators in line with established monitoring frameworks [246]. For example,
a wide range of biodiversity metrics, ecosystem processes and natural and anthropogenic stressors
could be measured or derived, but further efforts are required to transfer advances on the field into
accessible products for direct use at management levels. Table 5 suggest some potential challenges that
can help to guide future research in the field.

Table 5. Challenges for the effective implementation of drones in protected areas.

Management
Categories

Challenges

Wildlife Research and
Management

• Development of drones to minimize impact of wildlife.
• Optimization of automatic pattern recognition algorithms.
• Robust sampling design/limited statistical power.
• Integrating movement and visible/thermal data.
• Population structure and function, wildlife traits.

Ecosystem
Monitoring

• Consistent ecological indicators.
• Multitemporal studies.
• Targeting Essential Biodiversity Variables (EBVs).
• Multiscale studies/linking drones with Earth Observation systems.
• Mapping of aquatic environments/bathymetry maps
• Machine learning methods (neural networks, etc.)
• Ecosystem services/area designation and performance.
• Habitat suitability/species reintroduction studies

Law Enforcement

• Research required to assess the performance of drones to reduce illegal activities.
• Test hybrid (VTOL) platforms.
• Marine Protected Areas: Drones/Vessel patrols
• Focus on poaching, but there are other important human intrusions in protected areas that could benefit from drones

(illegal logging, mining, etc.)
• Threat maps.

Ecotourism

• Cost/benefit analysis
• Potential to introduce virtual flights.
• Fine-scale geofencing maps (Detailed map of sites where drone flights are allowed/conditioned/restricted)

Environmental
Management and

Disaster Response

• Move from prototypes to products and services.
• Implementation of Regional/Global Infrastructures for decision support.
• Satellite/Drone Remote Sensing integrative approach to model disturbance regimes.
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Abstract: Although many climate research experiments are providing valuable data, long-term
measurements are not always affordable. In the last decades, several facilities have secured long-term
experiments, but few studies have incorporated spatial and scale effects. Most of them have been
implemented in experimental agricultural fields but none for ecological studies. Scale effects can be
assessed using remote sensing images from space or airborne platforms. Unmanned aerial vehicles
(UAVs) are contributing to an increased spatial resolution, as well as becoming the intermediate
scale between ground measurements and satellite/airborne image data. In this paper we assess
the applicability of UAV-borne multispectral images to provide complementary experimental data
collected at point scale (field sampling) in a long-term rain manipulation experiment located at the
Kiskun Long-Term Socio-Ecological Research (LTSER) site named ExDRain to assess the effects on
grassland vegetation. Two multispectral sensors were compared at different scales, the Parrot Sequoia
camera on board a UAV and the portable Cropscan spectroradiometer. The NDVI values were used
to assess the effect of plastic roofs and a proportional reduction effect was found for Sequoia-derived
NDVI values. Acceptable and significant positive relationships were found between both sensors at
different scales, being stronger at Cropscan measurement scale. Differences found at plot scale might
be due to heterogeneous responses to treatments. Spatial variability analysis pointed out a more
homogeneous response for plots submitted to severe and moderate drought. More investigation is
needed to address the possible effect of species abundance on NDVI at plot scale contributing to a
more consistent representation of ground measurements. The feasibility of carrying out systematic
UAV flights coincident or close to ground campaigns will certainly reveal the consistency of the
observed spatial patterns in the long run.

Keywords: unmanned aerial vehicles (UAVs); field experiments; LTSER; drought; multiscale
approach; NDVI; Sequoia

1. Introduction

Climate change effects on ecosystems are being investigated at different spatial and temporal
scales. Both observational and experimental approaches are being applied to identify trends,
shifts and changes for different ecological indicators. Among the many initiatives, the Long-Term
Ecological Research (LTER) networks are informing about the factors driving changes in biodiversity,
the self-organizing capacity of ecosystems, the effects of rare events and disturbances, the impacts
of stressors on ecosystem function and the interactions between short- and long-term trends [1].
These LTER networks rely on site-based monitoring and research by providing data and detecting
trends identifying drivers and pressures on ecosystems and biota. The LTER networks’ major
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contribution is the enlargement of temporal and spatial scales to test global research hypotheses. In this
case, as in the NEON [2] and GCOS [3] networks, observational approach is the dominant method.

Experimental designs have been widely implemented to test research hypothesis in relation to
climate change. Typically, field experiments are designed to replicate conditions at which single and
multi-factor effects occur. Factors are controlled and effects are measured during a predetermined
period or in few cases for the long run such as ANAEE [4] or Drought-Net [5]. At plot scale, climate
manipulation experiments are a particularly effective way to study the ecological consequences of
climate change [6]. However, they are normally conceived to collect measurements at a certain spatial
scale, usually related to plot size or sampling method [4]. Only few experiments are planned which
follow a multiscale approach. Historical examples are the Oregon Transect Ecosystem Research
Project [7] or the HiWATER [8] which used remote sensing images together with ground-truth data.
Nevertheless, the experimental ecologist is hard-pressed to find specific guidance for the design,
execution and analysis of experiments to produce results that account for scale-dependent effects [9].

Remote sensing has traditionally been proposed as the essential tool to scale down the processes
observed with the help of the images provided either by Earth observation satellites or airborne
cameras/sensors and ground measurements. While covering the gradient from global to local scales,
remote sensing has been providing critical information to map changes and trends [10]. In the last
decades, remote sensing scientists are thoroughly investigating upscaling procedures to integrate
multiscale information for any observation of ecological relevance [11,12]. Major advances have
been reached in precision farming [13] mostly by using thermal, multi and hyperspectral airborne
sensors. However, there is a lack of research in multiscale approaches using remote sensing for
long-term ecological and climate change experiments [4]. There are many high and very high-resolution
sensors on board of Earth observation satellites providing images with spatial resolution going from
a few meters to tens of centimetres. Such availability enhances the multiscale approach but the
high-resolution images are costly and have to be pre-ordered and acquired over the study area. High-,
medium- and low-resolution scenes are periodically acquired by the orbiting satellites collecting
a time series of images illustrating temporal changes and trends at the landscape scale. The fine
resolution satellites or airborne campaigns may help in detailed habitat mapping, for instance while
dramatically increasing costs. Yet, Unmanned Aerial Vehicles (UAVs) can be flown over the same area
as frequently as required, only constrained by weather conditions or legislation, becoming a suitable
tool to map either elements or processes. As a major trait, UAVs provide the opportunity to define
spatial resolution as detailed as requested according to the mission objectives [14]. Remote sensing
UAV is becoming very useful in cropland monitoring [15,16] and precision farming [17]. It is also being
widely applied for environmental assessment [18] and similar studies on grasslands have addressed
sensor comparison for leaf area index estimation with ground measurements and UAV acquisitions [19].
Few studies are focusing on upscaling essential variables from natural vegetation making use of UAV
and multispectral sensors [14,20].

As an expected consequence of global warming, extreme events are becoming more frequent
across ecosystems including extreme and sudden droughts causing vegetation die-offs and community
shifts [21]. Extreme drought events can reduce primary production [22] and community functional
diversity [23]. At plot scale, climate manipulation experiments are particularly effective way to study
ecological consequences of climate change, especially long-term multi-site field experiments [6,24].
This is the case of the ExDRain experiment set out at Kiskun LTER station where rain manipulation
is applied since 2014 for several plots after the application of extreme drought event for some of
them [25]. Ecosystem recovery is assessed by periodically measuring plant cover and biomass using
NDVI (Normalized Difference Vegetation Index, [26]) collected using a portable CropScan MSR87
multispectral radiometer (Cropscan, Inc., Rochester, MN, USA) as a non-destructive method [27].
Cropscan has 8 narrow (10 nm bandwidth) spectral bands centred at 460, 510, 560, 610, 660, 710, 760
and 810 nm (bands 660 and 810 are usually used for NDVI calculation). However, the plant community
is composed by several grassland species and the response to treatments is very heterogeneous [6] due
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to different phenology and structure. Plots are larger than Cropscan footprint measurement and UAV
complementary information might help in providing ancillary information enhancing the assessment
on treatments effects.

In this work we assess the applicability of UAV-borne multispectral and RGB (Red-Green-Blue)
cameras to enhance experimental data by providing complementary information. We check the
correlation between data collected at point (field sampling) and plot (UAV sampling) scales and
analyse new observed patterns in relation to the effects of the ExDRain experiment on the vegetation.
We question whether NDVI-derived from UAV multispectral images acquired at lower scale are in
coherence with Cropscan point measurements. On the other hand, we examine the information
provided by UAV images and assess the effects of experimental treatments at plot scale, by which we
hypothesize that effects at different scales may be different and can enhance the interpretation of the
observed results.

2. Study Site and Experimental Design

2.1. Kiskun LTER Site

The Kiskun LTER site is located in the Kiskunság National Park (46◦52′N, 19◦25′E) in a Pannonian
sand forest-steppe vegetation mosaic [25] of high plant diversity and nature protection value [28].
It is included into the Kiskun LTSER (Long-Term Socio-Ecological Research) platform (Figure 1).
The Kiskunság region is located in Central Hungary covering 14,000 km2. It is an extremely
heterogeneous sandy area, consisting of arable fields, abandoned pastures, planted forests and
extensive natural and semi-natural habitats from xeric grasslands to salt marshes. The soil is calcaric
arenosol which enhances the semidesert character of the vegetation. Climate of the study area is
temperate continental. The vegetation period starts in April and finishes in October. Based on regional
30 years average values (1961–1990), mean annual temperature is 10.4 ◦C, mean monthly temperature
ranges from −1.9 ◦C in January to 21.1 ◦C in July, while mean annual precipitation is 505 mm with a
peak in June [29].

Kiskun LTER focuses on studying the effects of climate change (more extreme weather events and
longer vegetation periods) and land use change (abandonment of arable fields, decrease of grazing and
afforestation) on biodiversity as well as ecosystem functions and services in Kiskunság. According to
climate change scenarios for Hungary, the frequency of extreme dry and wet years is expected to
increase in the study region [30].

2.2. ExDRain Experiment

The experimental area represents the sand grassland of the continental semiarid forest-steppe
biome of Central Europe. The purpose of the experiment is to investigate how extreme and moderate
events interact by observing their single and combined effects on plant cover, abundance and
biomass of the grassland species in the site. The experimental design takes the results of the
multi-site EU FP5 VULCAN and the EU FP7 INCREASE projects [24,31,32] into consideration. In our
study plots, we sampled open grassland patches of semi-arid perennial grassland dominated by C3
bunchgrasses. We study the ecosystem recovery following the extreme drought and how it is affected
by experimentally reduced or increased precipitation.

One-off extreme drought treatment was created by excluding precipitation for five months in
2014. Starting in 2015 and repeating in each summer, four levels of long-term precipitation change
are applied: (1) strong drought (2-months duration), (2) moderate drought (1-month), (3) control,
and (4) water addition (four times per year, one per month between May and August, ca. 100 mm
in total). The two (i.e., extreme and precipitation change) treatments are combined in a full factorial
design (2 × 4 = 8 treatment combinations), in six replications (Figure 1c,d) resulting in a total number
of 48 plots of 3 × 3 m size. Exclusion is reached by covering with plastic the corresponding plots and
watering using irrigation diffusors (Figure 2).
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Plant biomass was estimated by non-destructive field spectroscopy with a portable Cropscan
MSR87 multispectral radiometer (Cropscan, Inc., Rochester, MN, USA) measuring at the same time
incoming and reflected radiation. Cropscan measurements were taken always exactly at the same
location placing the sensor above the plots at a height of 1.5 m. With a field of view (FOV) of 28◦, the
Cropscan samples a circular area of 0.44 m2 (diameter: 0.75 m) and the distance between measurement
points of the neighbouring plots was 1 m. The frame allowed us to repeat the sampling of each plot
at the same position during the different measurement events. Plastic roofs were removed for every
Cropscan measurement event. The last measurement for this study took place during the week of 23
to 27 July 2018.

From red (660 nm) and near infrared (810 nm) Cropscan reflectance values bands, we calculated
NDVI . The NDVI provides an accurate proxy for plant aboveground green biomass estimation for
pioneering plant communities [27,33].

 

Figure 1. (a) Location of the 16 first Long-Term Socio-Ecological Research (LTSER) platforms declared
in 2007 in Long-Term Ecological Research (LTER)-Europe [34] plus the three incorporated in 2010.
Nowadays, the number has increased to 31 [35] and more have been created in other LTER regional
networks [36]. (b) Location of Kiskun LTSER platform in Hungary (green area) and the ExDRain
experiment site (red dot). (c) Details of experimental area with the different treatment plots. (d) Plot
size and treatment legend by colours and crosses.
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Figure 2. Left picture shows the removable plastic roofs used to exclude from rainfall for drought
treatments in the ExDRain experiment and right picture the irrigating event for the watered plots.

3. Materials and Methods

3.1. UAV and Equipment

We used DJI Phantom 4+ quadcopter equipped with its original 4K 20 Mpix RGB CMOS camera
plus a special mount designed to bring the camera Parrot Sequoia (Figure 3). This multispectral sensor
captures images at 4 spectral bands (b1 green −550@40 nm, b2 red −660@40 nm, b3 red edge −735@10
nm and b4 near infrared −790@40 nm) with a vertical FOV of 48.5º, in addition to an RGB sensor
which was shut off during this study. The Sequoia camera is connected to its own battery and provides
wireless connection to be accessed and programmed through a computer. Additionally, the Sequoia
camera brings a sensor of irradiance located in the upper part of the mount which is concurrently
capturing irradiance while taking pictures [37]. A calibration panel is provided with every Sequoia
camera to be pictured before flight allowing for bands’ reflectance calculation after flight [38].

 
Figure 3. Unmanned Aerial Vehicle used for the study consisting of a DJI Phantom 4+ quadcopter
equipped with its 4K RGB camera and a specific mount for the Parrot Sequoia multispectral camera,
including both the camera itself and the sunshine sensor (original design from Zcopters).

3.2. Mission Planning and Geometric Processing

On 30 July at solar noon and with clear sky conditions we flew the UAV Phantom 4 Pro + equipped
with the Parrot Sequoia multispectral camera over the whole ExDRain area (0.31 ha from 3.86 ha total
flight area, Figure 4). One single flight of 14 minutes was carried out at 50 m above ground seeking
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to produce output images of 5.50 cm of nominal ground sampling distance (GSD) for Sequoia bands
and 1.43 for the RGB 4K camera. The flight was carried out at the lowest speed to increase platform
stability [39,40]. Radiometric calibration was simply achieved by reflectance calculation according to
radiance coefficients and irradiance measured at every picture centre [41]. Vignetting correction was
applied in the process. Mission planning was carried out using Pix4DMapper© software for Android
devices which allows for the design of grid missions and defining all flight parameters. Pictures lateral
and longitudinal overlap was defined as 80% both for DJI Phantom 4 Pro+ mission and for Sequoia
camera which calculates the corresponding time and distance between camera shots.

Figure 4. Left image shows a false color RGB composite with near infrared-red edge-red Sequoia
bands with the overlay of plot limits, Cropscan sampling footprints and measurement location points.
Right image shows Normalized Difference Vegetation Index (NDVI) image calculated with Sequoia
near infrared and red bands evidencing the plots covered by plastic (darker plots).

We located 16 ground control points (GCPs) with a differential GPS providing centimetric
precision (20 cm on-site precision and 4 cm after post-processing) to improve geometric accuracy of the
outputs to be produced. Images are automatically geotagged by Sequoia camera and the set of pictures
were introduced into Pix4DMapper© software (Pix4D S.A., Lausanne, Switzerland) to be stitched
and generate a multispectral orthomosaic together with digital surface model [42]. Ground control
points are plotted on top of a point cloud at the intermediate step in the processing to provide a
3D Root Mean Square (RMS) error for the output. The NDVI image from Sequoia was generated
using near infraredand red bands (Figure 4). Additionally, we processed the images acquired by
the 4K RGB camera with a GSD of 1.43 cm to improve the geolocation of the periodical Cropscan
point measurements.

3.3. Ground-Truth Sampling and Assessment of Plastic Effect

Cropscan periodical measurements were carried out during the previous week to the UAV
flight when plastic roofs were removed. As data capture campaigns are too intensive and Cropscan
measurements have to be also acquired close to noon, we could not fly with UAV and Sequoia camera
on board exactly at the same time of acquisition. The experiment had to be strictly applied so that
plastic roofs were mounted during UAV flight.

Therefore, as half of the plots were covered with plastic to exclude rain, we collected spectral
signature of a calibration panel with Cropscan and Sequoia both above and below the plastic to assess
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plastic’s effect on reflectance and irradiance. Image processing and data download was started once
back at the office of the station.

Parallel ground measurements during UAV flight were also collected for several plots both with
CropScan spectroradiometer and Sequoia camera in order to compare both sensors for the similar
spectral wavelengths. These measurements were geolocated with sub-metric precision as well.

3.4. Multiscale Analysis and Spatial Variability

We compared NDVI Cropscan ground measurements for every plot with NDVI values from the
Sequoia multispectral orthomosaic at 3 scales:

1. Pixel value at the point scale (n = 96).
2. Average value at the FOV scale (0.75 m diameter buffer around point measurements, n = 96).
3. Average value at the plot scale (3 × 3 m, n = 48).

The purpose of this analysis was to find the best related scale between both sensors and to assess
sensor comparison. We used the lineal coefficient of determination R2 for every scale comparison.

Finally, we compared spatial NDVI variability using standard deviation, Moran and Shannon
Indices at plot scales taking advantage from the additional spatial information provided by
Sequoia multispectral orthomosaic. This analysis will enable us to assess plot spatial heterogeneity,
autocorrelation and how the Cropscan NDVI FOV measurements are related to Sequoia NDVI for
plots identified per treatment.

4. Results

4.1. Geometric Accuracy of UAV Multispectral and RGB Orthomosaics

Table 1 shows the geometric characteristics of the two produced orthomosaics. Absolute root mean
square errors (RMSEs) of the multispectral orthomosaic was below 1 pixel. However, it was bigger than
1 pixel for the RGB orthomosaic. Figure 4 shows a Sequoia false colour composite (NIR-RedEdge-Red)
of the ExDRain experimental area and the NDVI image.

Table 1. Geometric characteristics of the UAV missions carried out over Doñana and Braila.

Flight Characteristics Multispectral RGB 4K Camera

Ground Sampling Distance (cm) 5. 5 1.45
Number of images 1064 135

Absolute RMS error (cm) 4.8 2.5

Location of Cropscan point measurements were revised and re-located using reference elements
which were very conspicuous in both orthomosaics.

4.2. Plastic Effect

Spectral reflectance and irradiance captured above and below plastic roofs show overall lower
values while measured under plastic (Figure 5). The effect on the irradiance is higher than for
reflectance being magnified for short wavelengths.

The NDVI calculated from these measurements are higher for plastic covered plots when Cropscan
was used below the plastic (R2 = 0.81, p < 0.01, n = 8). Nevertheless, the relationship was lineal and
underestimation was proportional to the measured values under plastic.
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Figure 5. Left chart shows irradiance values collected with Cropscan spectroradiometer above and
below plastic covered plots on a grey calibration panel. Right chart displays the corresponding
reflectance values.

4.3. Multiscale Comparison

Table 2 shows the coefficient of determination (R2) between the Cropscan and Sequoia NDVI
values at different scales. Results are shown for all plots together and separately for plastic covered
plots and uncovered ones. An acceptable positive and significant relationship was maintained
between both sensors at the different scales, being lower at plot scale and higher at FOV scale for
all measurements, covered and uncovered plots. Plastic covered plots systematically showed lower
Sequoia NDVI values although proportional to those measured below plastic cover.

Table 2. R2 values between Cropscan and Sequoia NDVI values for the different measurement scales
(n = 96 for point and FOV measurements, n = 48 for plots). R2 values between data from plastic covered
and uncovered plots are also provided (sample size is divided by two). All R2 values were significant
at p < 0.01.

Scales All Measurements Plastic Cover No Plastic

Point scale 0.43 0.31 0.37
FOV scale (circle, 40 cm radius) 0.46 0.41 0.65

Plot scale 0.38 0.21 0.33

Figure 6 shows the overall relationship between NDVI values of Cropscan and Sequoia at plot
scale (R2 = 0.38, p < 0.01, n = 48) with different markers as a function of the treatment.

We assessed treatments effect on Sequoia and Cropscan NDVI values. Aggregated Cropscan
values (two FOV measurements per plot) were much more similar among treatments than Sequoia
NDVI values at plot scale (Figure 7). Values for the covered plots were lower which can be due
to the plastic effect but they still follow the measured trend by Cropscan, i.e., plots submitted to
moderate drought show higher values than those under severe drought treatment. Yet, drought
treatments significantly showed lower NDVI values than control and watered treatments (one sample
t-test t = 2.79, p < 0.01, n = 24). Plots submitted to extreme drought effect did not show significant
differences within treatment neither with Sequoia average NDVI values per plot nor with Cropscan
point measurements (Figure 7).
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Figure 6. Scatterplot of Cropscan and Sequoia NDVI values for all plots. Different markers are used to
distinguish among treatments. Linear fit is also shown (R2 = 0.38, p < 0.01, n = 48).

Figure 7. Boxplots of NDVI values from Cropscan and Sequoia plot measurements according to
experimental treatments: control/moderate/severe drought/rainfed. Boxplot (a) shows the values for
those plots that were not submitted to extreme drought in 2014 and boxplot (b) shows the values for
those plots submitted to extreme drought.

We also assessed spatial variability within plots since Sequoia data provides much more
information for every single plot than Cropscan. Figure 8 depicts the standard deviation for Sequoia
NDVI values per plot indicating more spatial variability within control and watered plots than for
plots submitted to moderate and severe drought.
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Figure 8. Boxplot of standard deviation for Sequoia NDVI values of ExDRain plots according to
treatments. Boxplot (a) shows the values for those plots that were not submitted to extreme drought in
2014 and boxplot (b) shows the values for those plots submitted to extreme drought.

Average Moran Index values per treatment calculated from Sequoia NDVI values per plot revealed
lower spatial autocorrelation for control and watered treatments than for both drought treatments
(Table 3). Spatial autocorrelation of control and watered plots is lower, and therefore plots appear more
heterogeneous in terms of NDVI variability. Conversely, either moderate or severe drought treatments
manifest a higher homogeneity in NDVI values which might indicate a more homogeneous response
to treatments. Yet, extreme drought event only is evidenced for severe drought treatment where the
plots with the two treatments show higher spatial autocorrelation or a more homogeneous response.
Shannon index did show a very low variability with a very similar pattern.

Table 3. Average Moran and Shannon Indices per treatment from NDVI Sequoia values at plot scale.

Treatment Extreme Drought Moran Index Shannon Index

Control
No 0.8522 10.3499
Yes 0.8473 10.3530

Moderate drought No 0.9077 10.3525
Yes 0.9043 10.3478

Rain
No 0.8440 10.3417
Yes 0.8729 10.3522

Severe drought No 0.8834 10.3462
Yes 0.9195 10.3567

5. Discussion

Our study provides a first basis for the implementation of multiscale methodological approaches
on field experimental sites. Rapid and easy deployment and flight of UAVs equipped with multispectral
cameras can enhance and complement the results from these experiments by providing data from
surrounding pixels not measured in the experiment. In our case, the use of Sequoia multispectral
camera contributed to confirm the measured trends using Cropscan spectroradiometer at ground
scale. The NDVI values retrieved from Sequoia measurements were significantly related to Cropscan
measurements at different scales (Table 2), being weaker at plot scale and higher at FOV scale for
uncovered plots and for all measurements. A lower relationship at plot scale may be revealing not
necessarily an increase in sensor discrepancies but an influence of surrounding pixels in the treatment
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effect for the full plot. Such findings reveal a scale effect on treatments which has to be considered.
The use of drone multispectral images clearly enhances the information of treatments effects on
vegetation. So far, most of the multiscale approaches using UAVs have been applied in agricultural
studies [18], showing that vegetation indices derived from the use of UAVs are reliable for assessing
effects of experimental plots [43]. As UAVs are becoming widely available, its systematic use will
certainly complement the data collected at ground scale. Much work has been done over crops
evidencing the plausibility of upscaling essential information on crop health [15–17]. However, it
is crucial to understand the critical difference between crops and natural grasslands, as essentially
being manifested in the spatial distribution of individuals (homogeneous fields with similar growth
and health versus heterogeneous growth, phenology and foliar greenness) and different species
composition. Our main intention in this study was to show the spatial differences as a response to
experimental treatments as an enhancement of such information by using UAVs.

One big constraint of the study was the presence of plastic roofs over the treated plots. Plastic effect
on measurements consequently showed lower NDVI Sequoia values and higher Cropscan values
measured under the plastic cover (due to reduced irradiance). Transparent plastic-mulch film allows
visible lights to penetrate, but blocks outgoing long-wave radiation, and thus causes the greenhouse
effect [44]. Levin et al. [45] claimed that white and transparent plastic-mulch films have three
absorptions centred at 1218, 1732 and 2313 nm that are not affected by dust, rinse and surface factors.
In our case, we did not use any of these wavelengths and plastic effect can be considered as negligible
while making comparisons only among plastic covered plots.

Sequoia NDVI average values revealed much bigger differences between treatments than
Cropscan FOV measurements (Figure 5), but this effect cannot be separated from the plastic effect as
shown for Sequoia NDVI lower values. Significant differences are found between drought treatments
(severe and moderate) and control/watered treatments for Sequoia. Extreme drought effect was
evident neither with Cropscan nor with Sequoia measurements. These results are compliance with
major findings from the VULCAN/INCREASE experiment which revealed that recurring drought
treatment (precipitation exclusion) leads to mid-season reduction of aboveground biomass [6]. This is
coherent with the results obtained by using NDVI from multispectral Sequoia on board of UAV.

Species composition has also been assessed under ExDRain experiment and it changed
considerably in response to both extreme drought and long-term precipitation changes (unpublished
data). Although UAV mapping could not deal with species mapping in this case, plant species
variability might have an effect on NDVI values and therefore on spatial NDVI variability [46].
Actually, we were able to detect spatial variability within plots manifested for the treatments as more
homogeneous response in plots under drought treatment according to SD and Moran Autocorrelation
Index (Figure 8 and Table 3). Such finding may indicate heterogeneous responses to treatments based
on the NDVI values at plot scale which are not considered at Cropscan FOV scale of measurement.
Spatial variability might be due to different abundance on plant species and their spatial distribution
patterns within plots, but this has to be investigated. Sha et al. [19] found better estimates of Leaf
Area Index (LAI) values over sparsely vegetated areas as in our case. On the other hand, it also points
out the need to assess the homogeneity of the measured effect per plot and per treatment in order to
increase the consistency of the results. An analogous effect has been found for the temporal scale in
the VULCAN/INCREASE experiment where results show that the effect of drought treatment can be
overestimated with only one measurement at the time of the peak biomass, while multiple within-year
measurements better describe the response of biomass [27].

One major challenge for these studies, where point measurements have to be located in high
resolution orthomosaics, is the need to precisely geo-locate such measurements to guarantee a reliable
data comparison. Even though high precision DGPS were used providing centimetric precision, RMS
errors from the orthomosaics are close or are even bigger than final GSD. Therefore, the combined use of
multispectral with RGB high-resolution images can clearly assist in re-locating the point measurements
by identifying conspicuous elements in the image.
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6. Conclusions

In this paper we confirmed the valuable and fast applicability of multispectral images captured
by UAVs over experimental sites in providing complementary spatial information to the ground
measurements at point scale. One single flight was used to confirm acceptable multiscale NDVI
correlations being measured at point, FOV or plot scale. Although plastic covered plots reduced the
NDVI values, main differences between treatments were coherent with the ones measured at ground
scale with portable Cropscan spectroradiometer. Differences found at plot scale might be due to
heterogeneous response to treatments. Spatial variability analysis pointed out a more homogeneous
response for plots submitted to severe and moderate drought. More investigation is needed to address
the possible effect on NDVI of species abundance at plot scale contributing to a more consistent
representation of ground measurements. The feasibility to carry out systematic UAV flights in the
future coincident or close to ground campaigns will certainly reveal the consistency of the observed
spatial patterns in the long run.

Author Contributions: Conceptualization, R.D.-D. and M.K.; Data curation, R.D.-D., G.Ó. and M.K.; Formal
analysis, R.D.-D.; Funding acquisition, R.D.-D. and M.K.; Investigation, R.D.-D., Gy.K.-D. and M.K.; Methodology,
R.D.-D., G.Ó. and M.K.; Project administration, Gy.K.-D. and M.K.; Resources, G.Ó. and M.K.; Supervision, M.K.;
Validation, R.D.-D., G.Ó. and M.K.; Visualization, G.Ó.; Writing—original draft, R.D.-D.; Writing—review &
editing, R.D.-D..

Funding: This research was funded by the European Union’s Horizon 2020 Research and Innovation Program
under grant agreement No. 654359 (eLTER Horizon 2020 project). Gy. K-D. was supported by the National
Research, Development and Innovation Fund (NRDI Fund) of Hungary (Nos. K112576, K129068).

Acknowledgments: The authors want to thank the funding by the European Union’s Horizon 2020 Research and
Innovation Program under grant agreement No. 654359 (eLTER Horizon 2020 project). Gy. K-D. was supported
by the National Research, Development and Innovation Fund (NRDI Fund) of Hungary (Nos. K112576, K129068).
We are grateful to the Hungarian Academy of Sciences which provided permits for fieldwork in the Kiskun
ExDRain experiment.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Haase, P.; Tonkin, J.D.; Stoll, S.; Burkhard, B.; Frenzel, M.; Geijzendorffer, I.R.; Häuser, C.; Klotz, S.; Kühn, I.;
McDowell, W.H.; et al. The next generation of site-based long-term ecological monitoring: Linking essential
biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018, 613–614, 1376–1384. [CrossRef]
[PubMed]

2. Schimel, D.; Hargrove, W.; Hoffman, F.; MacMahon, J. NEON: A hierarchically designed national ecological
network. Front. Ecol. Environ. 2007, 5, 59. [CrossRef]

3. Peterson, T.; Daan, H.; Jones, P. Initial Selection of a GCOS Surface Network. Bull. Am. Meteorol. Soc. 1997,
78, 2145–2152. [CrossRef]

4. Clobert, J.; Chanzy, A.; Le Galliard, J.-F.; Chabbi, A.; Greiveldinger, L.; Caquet, T.; Loreau, M.; Mougin, C.;
Pichot, C.; Roy, J.; et al. How to Integrate Experimental Research Approaches in Ecological and
Environmental Studies: AnaEE France as an Example. Front. Ecol. Evol. 2018, 6. [CrossRef]

5. Knapp, A.K.; Avolio, M.L.; Beier, C.; Carroll, C.J.W.; Collins, S.L.; Dukes, J.S.; Fraser, L.H.; Griffin-Nolan, R.J.;
Hoover, D.L.; Jentsch, A.; et al. Pushing precipitation to the extremes in distributed experiments:
recommendations for simulating wet and dry years. Glob. Change Biol. 2017, 23, 1774–1782. [CrossRef]
[PubMed]

6. Ónodi, G.; Botta-Dukát, Z.; Kröel-Dulay, G.; Lellei-Kovács, E.; Kertész, M. Reduction in primary production
followed by rapid recovery of plant biomass in response to repeated mid-season droughts in a semiarid
shrubland. Plant Ecol. 2018, 219, 517–526. [CrossRef]

7. Peterson, D.L.; Waring, R.H. Overview of the Oregon Transect Ecosystem Research Project. Ecol. Appl. 1994,
4, 211–225. [CrossRef]

76



Drones 2019, 3, 7

8. Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, W.; Hu, X.; Xu, Z.; Wen, J.; et al. A multiscale dataset
for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017,
4, 170083. [CrossRef] [PubMed]

9. Gardner, R.H.; Kemp, W.M.; Kennedy, V.S.; Petersen, J.E. Scaling Relations in Experimental Ecology; Columbia
University Press: New York, NY, USA, 2012; ISBN 978-0-231-52904-4.

10. Díaz-Delgado, R.; Hurford, C.; Lucas, R. Introducing the Book “The Roles of Remote Sensing in Nature
Conservation.”. In The Roles of Remote Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017;
pp. 3–10, ISBN 978-3-319-64330-4.

11. Hufkens, K.; Bogaert, J.; Dong, Q.H.; Lu, L.; Huang, C.L.; Ma, M.G.; Che, T.; Li, X.; Veroustraete, F.;
Ceulemans, R. Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid
woodland. J. Arid Environ. 2008, 72, 1490–1505. [CrossRef]

12. Porcar-Castell, A.; Mac Arthur, A.; Rossini, M.; Eklundh, L.; Pacheco-Labrador, J.; Anderson, K.; Balzarolo, M.;
Martín, M.P.; Jin, H.; Tomelleri, E.; et al. EUROSPEC: at the interface between remote-sensing and ecosystem
CO2 flux measurements in Europe. Biogeosciences 2015, 12, 6103–6124. [CrossRef]

13. Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion
methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with
hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [CrossRef]

14. Lucas, R.; Díaz-Delgado, R.; Hurford, C. Expected Advances in a Rapidly Developing Work Area.
In The Roles of Remote Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017; pp. 309–318,
ISBN 978-3-319-64330-4.

15. Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding
trials using an unmanned aerial vehicle. Field Crops Res. 2017, 210, 71–80. [CrossRef]

16. Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.-H. Wheat yellow rust
monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166.
[CrossRef]

17. Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: a review.
Precis. Agric. 2012, 13, 693–712. [CrossRef]

18. Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.;
Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring.
Remote Sens. 2018, 10, 641. [CrossRef]

19. Sha, Z.; Wang, Y.; Bai, Y.; Zhao, Y.; Jin, H.; Na, Y.; Meng, X. Comparison of leaf area index inversion
for grassland vegetation through remotely sensed spectra by unmanned aerial vehicle and field-based
spectroradiometer. J. Plant Ecol. 2018. [CrossRef]

20. Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating
remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011,
19, 116–125. [CrossRef]

21. Lloret, F.; de la Riva, E.G.; Pérez-Ramos, I.M.; Marañón, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. Climatic
events inducing die-off in Mediterranean shrublands: are species’ responses related to their functional traits?
Oecologia 2016, 180, 1–13. [CrossRef] [PubMed]

22. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.;
Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003.
Nature 2005, 437, 529–533. [CrossRef]

23. de la Riva, E.G.; Lloret, F.; Pérez-Ramos, I.M.; Marañón, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R.
The importance of functional diversity on the stability of Mediterranean shrubland communities after the
impact of extreme climatic events. J. Plant Ecol. 2017, 10, 281–293. [CrossRef]

24. Kröel-Dulay, G.; Ransijn, J.; Schmidt, I.K.; Beier, C.; De Angelis, P.; de Dato, G.; Dukes, J.S.; Emmett, B.;
Estiarte, M.; Garadnai, J.; et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun.
2015, 6, 6682. [CrossRef] [PubMed]

25. Lellei-Kovács, E.; Kovács-Láng, E.; Kalapos, T.; Botta-Dukát, Z.; Barabás, S.; Beier, C. Experimental warming
does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem. Community Ecol. 2008,
9, 29–37. [CrossRef]

26. Rouse, J.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation;
Texas A&M Univ.; Remote Sensing Center: College Station, TX, USA, 1974.

77



Drones 2019, 3, 7

27. Ónodi, G.; Kröel-Dulay, G.; Kovács-Láng, E.; Ódor, P.; Botta-Dukat, Z.; Lhotsky, B.; Barabás, S.; Garadnai, J.;
Kertész, M. Comparing the accuracy of three non-destructive methods in estimating aboveground plant
biomass. Community Ecol. 2017, 18, 56–62. [CrossRef]

28. Molnár, Z.; Biró, M.; Bartha, S.; Fekete, G. Past Trends, Present State and Future Prospects of Hungarian
Forest-Steppes. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World; Werger, M.J.A.,
van Staalduinen, M.A., Eds.; Plant and Vegetation; Springer Netherlands: Dordrecht, The Netherlands, 2012;
pp. 209–252, ISBN 978-94-007-3886-7.

29. Kovács-Láng, E.; Kröel-Dulay, G.; Kertész, M.; Fekete, G.; Bartha, S.; Mika, J.; Dobi-Wantuch, I.; Rédei, T.;
Rajkai, K.; Hahn, I. Changes in the composition of sand grasslands along a climatic gradient in Hungary and
implications for climate change. Phytocoenologia 2000, 30, 385–407. [CrossRef]

30. Bartholy, J.; Pongrácz, R. Regional analysis of extreme temperature and precipitation indices for the
Carpathian Basin from 1946 to 2001. Glob. Planet. Change 2007, 57, 83–95. [CrossRef]

31. Beier, C.; Emmett, B.; Gundersen, P.; Tietema, A.; Peñuelas, J.; Estiarte, M.; Gordon, C.; Gorissen, A.;
Llorens, L.; Roda, F.; et al. Novel Approaches to Study Climate Change Effects on Terrestrial Ecosystems in
the Field: Drought and Passive Nighttime Warming. Ecosystems 2004, 7, 583–597. [CrossRef]

32. Peñuelas, J.; Prieto, P.; Beier, C.; Cesaraccio, C.; Angelis, P.D.; Dato, G.D.; Emmett, B.A.; Estiarte, M.;
Garadnai, J.; Gorissen, A.; et al. Response of plant species richness and primary productivity in shrublands
along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in
primary productivity in the heat and drought year of 2003. Glob. Change Biol. 2007, 13, 2563–2581. [CrossRef]

33. Díaz-Delgado, R.; Lloret, F.; Pons, X.; Terradas, J. Satellite Evidence of Decreasing Resilience in Mediterranean
Plant Communities After Recurrent Wildfires. Ecology 2002, 83, 2293–2303. [CrossRef]

34. Haberl, H.; Winiwarter, V.; Andersson, K.; Ayres, R.U.; Boone, C.; Castillo, A.; Cunfer, G.;
Fischer-Kowalski, M.; Freudenburg, W.R.; Furman, E.; et al. From LTER to LTSER: Conceptualizing the
socioeconomic dimension of long-term socioecological research. Ecol. Soc. 2006, 11, 13. [CrossRef]

35. Mirtl, M.; Orenstein, D.E.; Wildenberg, M.; Peterseil, J.; Frenzel, M. Development of LTSER Platforms in
LTER-Europe: Challenges and Experiences in Implementing Place-Based Long-Term Socio-ecological Research in
Selected Regions; Springer Netherlands: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-1176-1.

36. Dick, J.; Orenstein, D.E.; Holzer, J.; Wohner, C.; Achard, A.-L.; Andrews, C.; Avriel-Avni, N.; Beja, P.; Blond, N.;
Cabello, J.; et al. What is socio-ecological research delivering? A literature survey across 25 international
LTSER platforms. Sci. Total Environ. 2018, 622–623, 1225–1240. [CrossRef]

37. Franklin, S.E.; Ahmed, O.S.; Williams, G. Northern Conifer Forest Species Classification Using Multispectral
Data Acquired from an Unmanned Aerial Vehicle. Photogramm. Eng. Remote Sens. 2017, 83, 501–507.
[CrossRef]

38. Shen, Y.-Y.; Cattau, M.; Borenstein, S.; Weibel, D.; Frew, E.W. Toward an Architecture for Subalpine Forest
Health Monitoring Using Commercial Off-the-Shelf Unmanned Aircraft Systems and Sensors. Proceedings of
17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017.

39. Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine
restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614.
[CrossRef]

40. Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.;
Viljanen, N.; Greenwell, C.; et al. Direct Reflectance Measurements from Drones: Sensor Absolute
Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors 2018, 18, 1417.
[CrossRef] [PubMed]

41. Ahmed, O.S.; Shemrock, A.; Chabot, D.; Dillon, C.; Williams, G.; Wasson, R.; Franklin, S.E. Hierarchical land
cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle. Int. J.
Remote Sens. 2017, 38, 2037–2052. [CrossRef]

42. Unger, J.; Reich, M.; Heipke, C. UAV-based photogrammetry: monitoring of a building zone. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL, 601–606. [CrossRef]

43. Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices
derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental
plots? Eur. J. Agron. 2016, 74, 75–92. [CrossRef]

44. Lu, B.; He, Y.; Liu, H.H.T. Mapping vegetation biophysical and biochemical properties using unmanned
aerial vehicles-acquired imagery. Int. J. Remote Sens. 2017, 39, 1–23. [CrossRef]

78



Drones 2019, 3, 7

45. Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool for monitoring plasticulture
in agricultural landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [CrossRef]

46. Jiménez, M.; Díaz-Delgado, R. Sub-pixel Mapping of Doñana Shrubland Species. In The Roles of Remote
Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017; pp. 141–163, ISBN 978-3-319-64330-4.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

79



drones

Article

Greenness Indices from a Low-Cost UAV Imagery as
Tools for Monitoring Post-Fire Forest Recovery

Asier R. Larrinaga 1,2,3,* and Lluis Brotons 1,4,5

1 InForest Joint Research Unit, (CTFC-CREAF), 25280 Solsona, Spain; lluis.brotons@ctfc.cat
2 eNeBaDa, Santiago de Compostela, 15892 A Coruña, Spain
3 Forest Genetics and Ecology Group, Biologic Mission of Galicia (CSIC), 36413 Pontevedra, Spain
4 CREAF, 08193 Cerdanyola del Vallès, Spain
5 CSIC, 08193 Cerdanyola del Vallès, Spain
* Correspondence: asier@enebada.eu or arodriguez@mbg.csic.es; Tel.: +34-659-087-889

Received: 1 November 2018; Accepted: 1 January 2019; Published: 6 January 2019

Abstract: During recent years unmanned aerial vehicles (UAVs) have been increasingly used for
research and application in both agriculture and forestry. Nevertheless, most of this work has been
devoted to improving accuracy and explanatory power, often at the cost of usability and affordability.
We tested a low-cost UAV and a simple workflow to apply four different greenness indices to the
monitoring of pine (Pinus sylvestris and P. nigra) post-fire regeneration in a Mediterranean forest.
We selected two sites and measured all pines within a pre-selected plot. Winter flights were carried
out at each of the sites, at two flight heights (50 and 120 m). Automatically normalized images entered
an structure from motion (SfM) based photogrammetric software for restitution, and the obtained
point cloud and orthomosaic processed to get a canopy height model and four different greenness
indices. The sum of pine diameter at breast height (DBH) was regressed on summary statistics of
greenness indices and the canopy height model. Excess green index (ExGI) and green chromatic
coordinate (GCC) index outperformed the visible atmospherically resistant index (VARI) and green
red vegetation index (GRVI) in estimating pine DBH, while canopy height slightly improved the
models. Flight height did not severely affect model performance. Our results show that low cost
UAVs may improve forest monitoring after disturbance, even in those habitats and situations where
resource limitation is an issue.

Keywords: low-cost UAV; greenness index; Pinus nigra; Pinus sylvestris; forest regeneration; flight
altitude; small UAV

1. Introduction

During recent years, UAVs (unmanned aerial vehicles) have grown increasingly popular for the
study of land and its cover [1,2]. This trend is the consequence of a recent exponential development of
both the UAV industry and the do-it-yourself community, fostered by the technological advances in
robotics and the miniaturization of electronics.

Forest research is one of the fields where the use of UAV has promised immediate benefits [1].
UAVs allow the reduction of costs of airborne photography and LIDAR, and approach technology to
its final user [2,3]. By doing so, it offers great flexibility. UAV deployment is fast and cheap, ensuring
rapid responses to the needs of both academia and industry while allowing for repeated sampling with
no limits on deployment periodicity. A new, tailor-cut telemetry sampling strategy is now possible,
designed to fit the specific needs of each case study [3].

UAVs have been used to discriminate among species and provide estimates of tree and stand size,
tree cover, canopy height, gap abundance or even productivity, alone or in combination with LIDAR

Drones 2019, 3, 6; doi:10.3390/drones3010006 www.mdpi.com/journal/drones80



Drones 2019, 3, 6

data [4–12]. Tree health and pathogen or parasite attack have also been evaluated by means of UAV
telemetry [13].

Therefore, research on different methodologies and, more specifically, on the accuracy of those
data estimated by means of UAV imagery has bloomed during the last five years [2]. The accuracy
level of these kind of works is continuously increasing and it is a major focus of an important body of
research on UAV use in forestry [2,4,14–16]. Spatial accuracy and automatic tree detection in particular
are rapidly improving [9,12,16–19].

Nevertheless, accuracy is not always the main constraint to UAV use in forestry science. In fact,
pursuing high standards of spatial and analytical accuracy is a time consuming goal that often requires
major investment [20]. While this might be a sensible approach when working with economically
exploited forests and woodlands, it might hinder the development of forestry research in other areas or
research fields, such as disturbance response, where immediate revenues cannot be envisaged. In these
situations, the absence of any kind of data is common while economic resources and work forces are
scarce. A reduction of both accuracy and the cost of deployment could hence help to get general data
on the ecology of the forest that would greatly improve our knowledge.

In this work we explore the use of a low-cost UAV platform as a tool for monitoring recovery of
a Mediterranean forest after a strong disturbance. Our objective is to assess post-fire pine regeneration
(Scots pine, Pinus sylvestris, and black pine, P. nigra) in an area affected by a wildfire where oak has
become dominant. In order to identify pine cover in our area, we compare the use of four different
greenness indices at two different flight heights, recorded areas and hence costs. Low-cost UAV
platforms offer several advantages for this task: (1) they are affordable and easy to use for stakeholders
and practitioners, (2) they can be controlled and analyzed with free photogrammetric software and
3D reconstruction web services, (3) due to their small size they can be flown even in remote areas,
where access by vehicle is difficult, (4) they can be flown on demand at no cost, allowing one to choose
the flying time depending on weather, plant phenology or other logistical constraints, and (5) they
offer ultra-high resolution, allowing one to detect pine trees even at the early stages of regeneration.
In this context, we aimed to develop a tool to monitor the emergence of pines that grow among the
oaks and test the suitability of low-cost UAVs as a cost effective monitoring tool.

2. Materials and Methods

We carried out our work in the municipality of Riner, in the Lleida province (Catalonia, Spain),
where an extensive wildfire burnt down around 25,000 ha of pine-dominated woodland in 1998.
Most of the area have apparently recovered to a great extent in these last 20 years. A closer look,
however, depicts a different picture. The effect of wildfires might have drawn the forest beyond its
resilience threshold, causing a change to a new alternative equilibrium state [21]. In fact, although tree
cover seems to be almost completely recovered, its species composition has changed in a radical way,
as Portuguese oak (Quercus faginea) thrives in the burnt land where pines (P. nigra and P. sylvestris)
were dominant before the wildfire.

Our two sites, La Carral and Cal Rovira-Sanca, are 3.7 km away from each other and both of them
supported similar Mediterranean forests before the 1998 fire, on marl, limestone, and sandstone rocks
(Figures S1 from reference [22]).

2.1. UAV Deployment and Field Sampling

We carried out two flights in each of the sites, one at a height of 50 m and a second one at a height
of 120 m over terrain, by means of a DJI Phantom 2 quadcopter. We flew at two altitudes with the
aim of exploring the effect of flight height on image quality and subsequent capacity to characterize
pine tree recovery. The copter was equipped with a Phantom Vision FC200 camera, manufactured by DJI,
which has a resolution of 14 Mpx with a sensor size of 1/2.3” (6.17 mm * 4.55 mm), a focal length of 5 mm
and an electronic rolling shutter [23]. We set the camera to shoot one picture every three (La Carral) and
five (Cal Rovira-Sanca; Table 1) seconds with an automatic exposition mode setting (with ISO 100).
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All four flights were carried out in March 2015 (17 years after the fire) under optimal weather
conditions (sunny days with low wind intensity); in Cal Rovira-Sanca in the morning and in the
afternoon in La Carral (Table 1). By flying in winter, we ensured a good spectral discrimination
between pines (the only perennial tree species group in the area)—and the remaining components of
the canopy, namely Portuguese oaks, as the latter still hold their dry leaves on the branches and do not
shed new leaves until spring.

In each of the sites we selected a sampling area near the center of the flight zone and identified all
the pines growing there (Figure 1). Each pine was geo-referenced and identified to the species level.
In addition, height and diameter at breast height was measured (DBH) for each individual. DBH was
measured with the aid of a measuring tape with a 1 mm resolution. Tree height was measured with the
same measuring tape, except for the highest trees, where a measuring pole was used (1 cm resolution).
We measured DBH at 1 m height for logistical reasons, given the abundance of low pine trees.

Table 1. Characteristics of the four flights carried out in La Carral and Cal Rovira-Sanca. Time refers
to mean time of each flight. Centre of scene: geographic center of each scene in UTM, fuse 31, datum
ETRS89. Flight height gives nominal values. Area: coverage area of each flight. Pixel size: size of
ground pixel. Reprojection error: difference between a point in an image and its position according to
the fitted 3D model. Motion blur: blur due to linear movement (rotation effects are not included).

Site La Carral La Carral Cal Rovira-Sanca Cal Rovira-Sanca

Date (DD/MM/YY) 03/07/18 03/07/18 03/03/18 03/03/18
Time (UTC) 16:59 17:26 10:13 10:25
Sun elevation angle (◦) 19.08 14.49 27.29 28.96
Sun azimuth angle (◦) 243.95 249.07 130.07 132.86
Centre of Scene (UTM31N-ETRS89) (378698,4640314) (378715,4640324) (375511,4642336) (375522,4642349)
# of images 160 147 90 67
Flight height (m) 50 120 50 120
Flight speed (m/s) 4 4 4 4
Area (ha) 5.82 24.6 7.54 21.3
Side overlap (%) 55 65 48 62
Forward overlap (%) 74 89 57 82
Effective overlap (# image/pixel) 3.40 7.94 2.88 4.80
Pixel size (cm) 1.46 4 1.59 3.96
Reprojection error (pixel) 8.31 7.95 1.78 1.76
Mean shutter speed (s) 1/288 1/312 1/457 1/525
Motion blur (cm - pixel) 1.39–0.95 1.28–0.32 0.88–0.55 0.76–0.16

Figure 1. Aerial ortophotographs of both sites, with overlapped positions of all the pines found in the
sampling areas.
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2.2. Image Analysis

We aimed to get an easy workflow and to that end, we tried to minimize parameter tweaking
during the whole process. Hence, most of the procedures were carried out using automatic tools and
algorithms, as well as default values for the various parameters. For the rest of the section, we will be
giving details on the parameters we set specifically, while omitting those parameters that were set to
their default values.

First, we adjusted all the aerial images with an image managing and editing software [24],
by sequentially applying the Automatic Levels and Automatic Contrast tools. By doing so we corrected
some inequalities in color balance produced by the FC200 camera and improved their contrast for
further analysis.

We carried out 3D reconstruction within an advanced terrain-oriented software that creates 3D
models, point clouds and orthomosaics from a set of images on the same subject, by means of SfM
(structure from motion) techniques [16,25,26]. We followed the general workflow suggested in its
user manual [27]. Photo aligning and estimation of camera locations and calibration parameters were
carried out as a first step, together with the building of a sparse point cloud (Figure 2; Figure S2).
This sparse point cloud was then used to create a dense point cloud with mean point density of
407 points/m for the 50 m high flights and 69 points/m for the 120 m high flights. Finally, a digital
elevation model and an orthomosaic were built from this point cloud, using the corresponding default
parameters in our 3D reconstruction software [25].

Figure 2. General workflow for the analysis of UAV imagery, as shown by its intermediate output
images, point clouds and 3D models. A detailed workflow is provided as Figure S2-1. Orthoimages are
shown draped on the obtained DSM, in order to improve figure display.

As a reference image to set control points, we used the most recent orthophoto of the area from the
National Plan of Aerial Orthophotography (Plan Nacional de Ortofotografía Aerea, PNOA), which has
a pixel resolution of 25 cm. Altitude of control points was manually extracted from the official digital
terrain model (DTM05, 5 m spatial resolution) released by PNOA. We set between 7 and 9 control
points per flight by selecting particular features that could be identified both in the orthomosaic
obtained from the 3D reconstruction software [25] and in our reference aerial photograph, such as
stones, rocks, fallen trunks and artificial features (corners, road paint, etc.). We then used those control
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points to reconfigure the cameras and rebuild the dense point cloud, the DSM (digital surface model)
and the orthomosaic.

The entire process within the 3D reconstruction software was carried out with by-default
parameters and pixel size was only set during the export step. We exported 50 m high flight
orthomosaics and DSM with a pixel size of 2 and 8 cm, respectively and those from 120 m high
flights with pixels of 4 and 16 cm.

We clipped the obtained point cloud by means of a specific free tool for forest LIDAR data
analysis [28]). Misplaced points were detected in those clipped point clouds obtained from 50 m high
flights and hence, they were cleaned up with a point cloud editing and registering open software [29].
Those from both 120 m high flights did not need such a cleaning process. We extracted those points
corresponding to the ground level, by means of a filtering algorithm adapted from Kraus and
Pfeifer [30] and then computed a digital terrain model (DTM) by using the mean elevation of all
ground points within a cell [28]. From the highest elevation point in each cell and the created DSM,
we built a canopy height model with a cell size of 10*10 cm2 [28].

We calculated four different greenness indices from the obtained orthomosaic: excess green
index (ExGI), green chromatic coordinate (GCC), green-red vegetation index (GRVI) and visible
atmospherically resistant index (VARI). We hereby provide the rationale for their selection and
their definition:

• The excess green index (ExGI) is a contrast index that has been shown to outperform other indices
in discriminating vegetation [31,32] and is one of the most widely used indices in the visual
spectrum. It is defined as:

ExGI = 2 ∗ G − (R + B) (1)

• The green chromatic coordinate (GCC) has also been used to detect vegetation and analyze
plant phenology and dynamics [31,32]. Both ExGI and GRVI correlate with measurements made
with a SpectroSense narrow spectrometer [33], but GRVI is far less sensitive to changes in
scene illumination [32]. It is simply the chromatic coordinate of the green channel expressed
as a proportion of the sum of coordinates:

GCC =
G

R + G + B
(2)

• The green red vegetation index (GRVI) was first used by Rouse et al. [34] who concluded it
could be used for several measures of crops and rangelands. Their conclusions have been later
confirmed in several occasions [35–38]. It responds to leave senescence of deciduous forests in
a parallel way to that of NDVI [37] and hence could be useful for discriminating senescent leaves
from green needles. This index is given by:

GRVI =
G − R
G + R

(3)

• Lastly, the visible atmospherically resistant index (VARI) was proposed by Gitelson et al. [39].
It is an improvement of GRVI that reduces atmospheric effects. Although this is not an expected
severe effect in low flying UAV platforms, it might locally be so, at Mediterranean sites with
large amounts of bare soil. In addition, it has been reported to correlate better than GRVI with
vegetation fraction [39]. It is defined as:

VARI =
G − R

G + R − B
(4)

We calculated all four greenness indices directly from their digital numbers (DN) as provided by
the JPEG format provided by the camera, instead of calculating reflectance values. JPEG compression
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is a “lossy” compression method that prioritizes brightness over color, resulting in an important
reduction of dynamic range of the picture and certain degree of image posterization (hard color
changes and lower number of colors in the image). As a result, radiometric resolution decreases,
which should reduce the ability to discriminate among different terrain or vegetation categories based
on their visual spectrum. However, JPEG images still can successfully discriminate among different
phenological stages of the vegetation, except at the most extreme compression ratios (97%) [32].

As we were not using reflectance to calculate these indices, their properties might not be the same
as those described by other authors [35,37,39]. Particularly, our calculated indices cannot be directly
compared with indices from different studies or even different flights, as they are sensitive to sensor
characteristics and scene illumination. Still, we expected them to be useful in our context and decided
to use this simpler approach, as our aim was to get as simple a workflow as possible, in order to allow
for an easy, handy use of UAV imagery by non-expert users. Similar approaches have been successful
in the past, even when analyzing repeated images over time [32,33,40,41]. Despite important effects of
camera model and scene illumination in absolute greenness indices, the changes in plant phenology
(changes from green to senescent leaves) were correctly detected by using uncorrected DNs [41].

Index calculations and their posterior analysis were carried out in an open SIG software [42],
by combining the use of raster calculator with specific tools of zone statistics and spatial joining.
The whole process for each index, after its calculation, involved the following steps:

• Applying the greenness threshold to the indices layers, in order to erase all non-green pixels,
which were set to 0, For ExGI, GRVI and VARI, we defined green pixels as those with values
greater than 0 and reclassified values less than 0 as 0. For GCC, the applied threshold was 1/3,
and hence all values equal to or lesser than 1/3 were set to 0.

• Calculating the zone statistics of the greenness index and the filtered canopy height model for
each 5*5 m2 cell within the study area. Zone statistics produces six different measures of the index
value per each cell: count, mean, standard deviation, median, maximum and minimum.

• Calculating the pooled DBH of all measured pines within the cells of this same grid.

2.3. Statistical Analysis

We aimed to assess the recovery of pines in the areas burnt in 1998. Hence, we selected the sum of
the diameter at the breast height (DBH) of all pines within a cell as our response variable (Figure 3).
DBH was highly correlated to pine height (see Supplementary Material S1) and its measure in pines is
easier and less prone to measurement errors. DBH has also been related to many other morphological
and functional traits [43–49] and hence it is open to a more insightful analysis. The sum of DBH values
from all the pines in a grid cell combines the effect of density (number of pine trees per cell) with
that of tree size (DBH). Given the relationship of DBH with crown size and foliage area [50], the sum
of DBH is expected to correlate also with canopy cover [51]. In fact, basal area and tree density can
successfully be used to predict canopy cover in pines [52–54].

First, we carried out simple linear regression analysis of the sum of DBH on the four greenness
indices and on the canopy height model. For each greenness index and the canopy height model,
we fitted six models, where the derived explanatory variables corresponded to six different summary
statistics per 5 m grid-cell: the count of points with non-zero values for the corresponding index or
canopy height model and the sum, mean, standard deviation, maximum and median of the values of
all points within the cell. Our aim was to explore which statistic could be better suited for estimating
sum of DBH from greenness index and canopy height maps. Then we tried to improve model fit by
combining greenness indices with pine canopy height, by means of multiple linear regression analysis.

R2 (for simple linear models) and adjusted R2 (for multiple linear models) and scatterplots were
used throughout the process to assess model fit and comparing models.

All statistics were carried out in R [55], by means of the R-Studio integrated development
environment [56].
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Figure 3. Distribution of DBH for all individuals of Pinus nigra and Pinus sylvestris found within the
study area, both at Cal Rovira-Sanca and La Carral.

3. Results

Two pine species were found in both study sites, black pine (Pinus nigra) and Scots pine
(Pinus sylvestris), although only one individual of the latter was recorded in La Carral. Mean tree height
was 124.94 cm (s.d. = 88.78) for black pine and 188.15 (s.d. = 117.87) for Scots pine in Cal Rovira-Sanca
and 109.82 (s.d. = 51.38) for black pine in La Carral, while the only Scots pine in this site was 230 cm
high. DBH values were lower for black pine than for Scots pine, around 3.25 cm (mean = 3.36 and
s.d. = 2.1 for Cal Rovira-Sanca; mean = 3.2 and s.d. = 1.87 for La Carral) versus 5 (mean = 4.91 and
s.d. = 3.12 in Cal Rovira-Sanca; 6.6 cm for the only tree in La Carral).

The proportion of small trees was high for both species, but higher for black pine: median height
of 117.5 and 105 and median DBH of 3.1 and 2.4 for Cal Rovira-Sanca and La Carral, respectively,
as opposed to a median height of 192.5 and median DBH of 4.1 in Cal Rovira-Sanca for the Scots pine
(see Figure 3 and Figure S3).

Due to flying times, both at La Carral and Cal Rovira-Sanca, light availability strongly limited
the automatic selection of shutter speed, which resulted in a high motion blur (Table 1). Still, it was
much higher in La Carral than in Cal Rovira-Sanca, which translated into additional distortion and
reprojection errors (Table 1, Figure S4). Reprojection error was more than four times larger in La Carral
than in Cal Rovira-Sanca and radial distortion much more exaggerated.
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Greenness indices were revealed to be much better proxies for the sum of pine DBH than canopy
height in both La Carral and Cal Rovira-Sanca. In fact, mean R2 for the regressions of sum of pine
DBH on the different statistics of greenness indices ranged from 0.005 to 0.466, while the regressions
on canopy statistics ranged from 0.008 to 0.028 (Table 1; Figure 4). However, large differences were
found among greenness indices (Figure S5-1). Even if GRVI and VARI still resulted in higher R2 than
any pine canopy height model, they were clearly outperformed by ExGI and GCC, which reached
a maximum R2 of more than 45% (Table 2).

Different statistics for the four greenness indices showed markedly differing fits, as shown by the
high coefficients of variation of R2 (Table 1; Figure 4). There were no clear-cut patterns of precision
among the tested statistics that could be considered general for all four indices. Nevertheless, the count
of non-zero values appears as the most consistently unreliable measure, with CVs higher than 100% for
the all four indices. The best fitting model for one flight was not the same as for the others (Tables S6),
which precludes considering any of them as a general best fitting model (Figure S7).

Table 2. Summary statistics of the determination coefficient (R2) for the simple regressions of the sum
of pine DBH on the four greenness indices and the canopy height model. Figures show the average
R2 across flights (two sites at each of two flight heights) and its coefficient of variation, expressed
as percentage (within brackets). CHM stands for canopy height model. See “Imagery analysis” for
a definition of the four indices.

ExGI GRVI GCC VARI All Indices CHM

Count of non-zero index 0.154 (124.0) 0.114 (118.4) 0.147 (127.9) 0.121 (119.8) 0.134 (14.5) 0.028 (50.0)
Max index value 0.389 (27.2) 0.164 (98.2) 0.297 (37.7) 0.051 (119.6) 0.225 (65.9) 0.014 (121.4)
Mean index value 0.401 (12.7) 0.195 (61.0) 0.370 (50.5) 0.039 (184.6) 0.251 (66.9) 0.015 (113.3)
Median index value 0.227 (80.6) 0.162 (50.6) 0.182 (103.3) 0.076 (118.4) 0.162 (39.1) 0.008 (125.0)
Std index values 0.440 (37.3) 0.152 (57.9) 0.466 (32.2) 0.005 (40.0) 0.266 (84.5) 0.018 (100.0)
Sum of index values 0.256 (40.2) 0.088 (78.4) 0.155 (122.6) 0.027 (122.2) 0.132 (74.6) 0.014 (114.3)

All measures 0.311 (36.8) 0.146 (26.4) 0.270 (48.4) 0.053 (76.8) 0.016 (41.1)

Canopy height alone shows a very poor explanatory power of the sum of DBH of pines,
with a pooled mean of R2 of 0.016, well below the values obtained from the four greenness indices.
Accordingly, jointly considering greenness indices and canopy height does not increase adjusted R2

more than 10% (Figure 4). For both sites and both flight heights, however, the best fitting model
included always a canopy height statistics (Figure 5; Tables S6).

Different statistics of the canopy height model resulted in markedly different models (Table 1),
with adjusted R2s varying between 0.8 and 28%. The canopy statistics that provided the highest R2

was the count of cells with non-zero values, although it was not the one producing the best models
when combined with greenness indices (Table S1).

Flight height did not severely affect the capacity to estimate the sum of pine DBH per grid-cell
(Figures 4 and 5). However, the best fits were always achieved for 120 m flights (Figure 4), although with
a larger difference in Cal Rovira-Sanca.

Overall, the model with a best fit for the four flights included the standard deviation of the GCC
index and the median of the canopy height model. It generally achieves fits close to those of the best
fitting model for each of the flights (Figure 4 and Figure S5-1, Tables S3), although the difference was
higher for the 50 m flight in Cal Rovira-Sanca.
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Figure 4. Values of the determination coefficient from the OLS regressions of the four greenness indices
on the sum of DBH. Upper panel: simple regressions. Lower panel: multiple regressions where canopy
height statistics were included as additional explanatory variables.
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Figure 5. 3D scatterplots showing the best models. Each panel shows the bivariate regression that
obtained the best fit (highest R2) at each of the four flights. Blue dots indicate observed values, while the
grey cover shows the fitted bivariate regression surface. Sum of DBH refers to the sum of the DBH
of all the trees in each of the 5 m cells in which the study area was divided. Mean, s.d. and sum of
GCC refers to the mean, standard deviation and sum of the Green Chromatic Coordinate values for all
points of the point cloud within those same cells. S.d. of ExGi refers to the standard deviation of the
Excess Green Index values for these same cells. Finally, median of canopy height model refers to the
median value of the canopy height model (digital surface model) in each of the 5 m cells.

4. Discussion

UAVs are being increasingly used in ecological and conservation studies and monitoring, due
to their multiple advantages, such as an increased spatial resolution, lower cost, higher acquisition
flexibility and higher temporal resolution [1,2]. Low cost UAVs increase flexibility of use and reduce
general costs as compared to professional platforms, and at the same time considerably reduce
their learning slope, which has been deemed too steep. Yet, despite their low cost and ease of use,
they accomplish spatial resolution way higher than those of aerial orthoimagery and provide useful
results with a limited effort in image post-processing and analysis. This cost reduction is especially
important for ecological studies and monitoring in non-profit forests and other habitats. In fact,
nowadays, close forests make up only a small fraction of the experiments with UAVs in the field,
while high value crops and forests are the main focus of most of them [6].
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The flexibility and low cost of UAV deployment have been key factors determining the results of
our pine estimation, as they allowed flying during the end of winter, before Portuguese oaks shed their
leaves and the grass begins growing after the winter. Seeking the best moment to maximize spectral
contrast among habitat components is paramount when it comes to discriminating different plant
species or vegetation types with visual spectrum cameras [40].

Since the proposal of the first two vegetation indices by Pearson and Miller [57] and that of the
NDVI shortly after by Rouse et al. [34], a high number of vegetation indices have been proposed
and used for the study of vegetation from satellite, airplane and UAV sensor imagery (see for
example references [32,38,39,41,58,59]). Most of them rely on the use of near infrared region (NIR),
which profits from the marked difference in the absorbance spectrum of chlorophyll between red and
near-infrared regions. The use and development of those indices that rely exclusively on the visual
spectrum has sharply increased during last years, though, as a way to overcome the limited choice
of spectrum bands in most UAV carried sensors. Assessment of their differential performance has
yielded inconclusive results [31,32,35–37,39,41], but may even be better than those that include a NIR
band [33,36]. Our results match those of Woebbecke et al. [31], who reported ExGI and GCC to perform
better than other four indices when discriminating vegetation from non-plant background in different
light conditions. Sonnentag et al. [32] recommended using GCC over ExGI to examine vegetation
phenology in repeat photography studies, due to its lower sensitivity to changes in scene illumination.
In our two sites, GCC also achieved higher accuracies when estimating pine cover in regenerating
forests than ExGI.

By combining these indices with information derived from a canopy height model, we obtained
determination coefficients for the pooled DBH of pines of up to 60%. Similar studies in agricultural
plots, relating vegetation indices with vegetation fraction or cover [7,33,60], and in forest studies [8,61]
report comparable figures. For example, Puliti et al. [8] achieved a 60% determination coefficient
when estimating basal area from UAV imagery by combining point density and height. In our case,
the canopy height model only improved the fit slightly (around 10%), probably due to the small size
of most of the pines in both of our study sites. Later stages in the regeneration of vegetation would
probably change the role of canopy height models in pine abundance prediction, as they would better
allow discriminating pines from tall grasses and shrubs. Trials with canopy height of green pixels did
not improve the fit of our models in this early stage (unpublished data).

Automatic exposition mode produced contrasting shutter speed values between sites, which
translated into very diverse motion blur and radial distortion values. Surprisingly, we attained better
results in La Carral, where motion blur was much larger than in Cal Rovira-Sanca. This larger motion
blur resulted also in a marked radial distortion. Motion blur reduces the number of detected feature
points and hence affects the quality of the photogrammetric processes [62]. A motion blur of two pixels
has been deemed as enough to alter the results of these processes [63], although more recent work
challenges this claim [62]. We estimated motion blur values below this threshold for the four flights,
which could help explain the lack of relationship between motion blur and model fit performance at
both sites. There were more evergreen shrubs in La Carral (eight shrubs) than in Cal Rovira-Sanca
(one shrub) and the grid was built to avoid the green field at the eastern margin of Cal Rovira-Sanca
area. Hence, we can rule out the presence of shrubs or other green vegetation as the reason for the
lower performance of regressions in Cal Rovira-Sanca. The images in La Carral were taken with a much
higher side and forward overlap, which could underlie the larger determination coefficients obtained
in this site. Alternatively, the difference between flying times could have produced the difference
between both sites. Lower sun angles result in changes in color temperature of the downwelling
illumination [64,65], which would result in higher contrast between red and green channels.

We did not find marked differences between two contrasting flight altitudes in the general
performance of greenness indices, although the selection of optimal greenness index or cell statistic
depended on altitude at both sites. Flight height was an important determinant of the estimate of
vegetation cover of wheat and barley experimental crops, together with growth stage and stitching
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software [33]. Flight height determines the final image resolution obtained as well as the effect of
topography on radiance (by changing the relative angle between terrain slopes and the UAV) and hence,
values of greenness indices [33,66]. A change of scale can be expected to modify the determination
coefficient of greenness indices, by changing the greenness values of each pixel [67]. However,
we did not notice any remarkable effect, probably because our analysis relied on descriptive statistics
encapsulating information at a coarser spatial extent of 5*5 m (Figure S5). Topography was not
expected to introduce important variations on the values of greenness indices, as it was relatively
mild and homogeneous in our filed plots. Actually, in contrast with our expectations, at both study
sites 120 m flights resulted in higher determination coefficients than 50 m ones. Given the differences
among flights, in our case either higher overlap values or lower proportional motion blur could be
the drivers of this trend. However, the obtained regression fits are much better in La Carral than in
Cal Rovira-Sanca, despite their much higher motion blur. Hence, our results suggest that the key
parameter determining the determination coefficient of sum of DBH on greenness indices is a higher
image overlap, rather than motion blur.

The UAV deployment and imagery analysis we present here has its own limitations, leading to
areas for further improvement of image acquisition and analysis. First, the camera used has a FOV
of 110◦ and non-rectilinear lenses, which results in a heavy fish-eye effect and a significant barrel
distortion. Although the processing of images within Agisoft Photoscan corrects for lens distortion
before carrying out the image matching process, the effect of distortion on image quality is too high
toward the edges of the image and may result in a low quality in important fractions of the orthoimage.
Correcting the geometric distortion of images before loading them in the photogrammetric software
could improve accuracy and geometry of the final orthomosaic. This correction can be carried out in
specialized software and should also consider the distortion caused by the electronic rolling shutter
and motion blur resulting from aircraft movement [23,62]. Newer UAVs harbor improved quality
cameras, even at the low cost range of products, with rectilinear lenses and more limited geometric
distortions, that would help improve the detection of photosynthetically active vegetation.

Second, trying to reduce complexity of deployment and analysis to a minimum, we did not place
ground control points. Spatial accuracy of the obtained orthoimage was thus limited by the resolution
of the PNOA imagery (pixel size of 25 cm and RMSE below 50 cm) [68] and by the error associated to
the identification of common points in the obtained orthoimage and in the PNOA orthophotograph.
Although most present day low cost UAVs geotag the images taken on the fly, their GPS accuracy
is still low and commonly results in RMSEs above 1 meter [20]. Hence, if we aim to reduce costs
to a minimum, we need to deploy several ground control points (GCP) around the plot to increase
the spatial accuracy. The spatial accuracy we get when using GCPs will ultimately depend on the
accuracy of GCP location measurement, which may be reduced to centimeters or even millimeters
with differential (DGPS) or real time kinetic (RTK) GPS measurements [20]. A software-as-a-service
(SaaS) can also improve accuracy at an affordable cost, allowing RMSE values around four times lower
than those from built-in GPS devices of consumer-level UAVs [20].

Third, the camera we used records data only on the visual spectrum. While this is one of the
strengths of our work (due to its availability and ease of operation), it also limits the capacity to properly
discriminate the photosynthetically active vegetation from the dormant vegetation. Capturing near
infrared radiation (NIR) requires a more expensive, multispectral sensor. These kind of multispectral
cameras are now more readily available for UAVs deployment. The assessment of its value in forestry
is under current development, but they will probably prove especially suitable for multitemporal
image acquisition and comparison [13,69,70].

5. Conclusion

Our results show that low cost UAV platforms are a useful alternative to professional platforms
when it comes to the detailed, cost-effective monitoring of forest ecosystems and forest recovery after
disturbance, especially in non-profit forests where economic and human resources may be scarcer.
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By using a simple approach with a consumer level UAV platform and low cost (educational license at
179$) or free software, we have predicted post-fire pine recovery (estimated as the sum of pine DBH)
with a relatively high coefficient of determination of up to 60%. Furthermore, all the software used has
been applied with its default values, avoiding tweaking of any of their parameters. This allows the use
of these types of procedures by end users working in forestry and applied research, and at the same
time leaves margin for further improving the accuracy of the process. All in all, consumer level UAVs
can be expected to provide a common low cost tool for ecological monitoring of post-fire recovery and
other conservation and monitoring tasks, given future drops in prices, increasing accuracy levels and
widening in application types.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-446X/3/1/6/s1,
Figure S1.1. A detail of a high-cover area within the Cal Rovira-Sanca area, Figure S1.2. A detail of a low-cover
area within the La Carral area, Figure S2-1. General workflow followed for the analysis of UAV imagery and the
software frameworks used in each of the steps. Numbers refer to the different intermediate outputs shown in
figure S2, Figure S3-1. Height distribution of Pinus nigra and Pinus sylvestris in La Carral and Cal Rovira-Sanca,
as measured in the field, Figure S3-2. Regressions of tree height on DBH for both species in La Carral and Cal
Rovira-Sanca, Figure S4-1. Image overlap obtained for the four flights. Figures depict the number of images where
each point is present, Figure S4-2. Image residuals for the Phantom Vision FC200 sensor after camera calibration
performed within Agisoft PhotoScan software. Scale of residual lines is indicated in pixel units, Figure S5-1. Maps
of the four greenness indices and the estimated canopy model from the four flights carried out at both sites and
two flight altitude, Table S6-1. Estimates of the best fitting model for the 50 m high flight in La Carral, with one
greenness index (ExGI) and the pine canopy height model (CHM), Table S6-2. Estimates of the best fitting model
for the 120 m high flight in La Carral, with one greenness index (GCC) and the pine canopy height model (CHM),
Table S6-3. Estimates of the best fitting model for the 50 m high flight in Cal Rovira-Sanca, with one greenness
index (GCC) and the pine canopy height model (CHM), Table S6-4. Estimates of the best fitting model for the
50 m high flight in Cal Rovira-Sanca, with the greenness index (GCC) and one pine canopy height model (CHM),
Figure S7-1. 3D scatterplots showing the overall best fitting model applied to each site and flight altitude.
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Abstract: This paper presents the results of a study undertaken to classify lowland native grassland
communities in the Tasmanian Midlands region. Data was collected using the 20 band hyperspectral
snapshot PhotonFocus sensor mounted on an unmanned aerial vehicle. The spectral range of the
sensor is 600 to 875 nm. Four vegetation classes were identified for analysis including Themeda triandra
grassland, Wilsonia rotundifolia, Danthonia/Poa grassland, and Acacia dealbata. In addition to the
hyperspectral UAS dataset, a Digital Surface Model (DSM) was derived using a structure-from-motion
(SfM). Classification was undertaken using an object-based Random Forest (RF) classification model.
Variable importance measures from the training model indicated that the DSM was the most
significant variable. Key spectral variables included bands two (620.9 nm), four (651.1 nm), and
11 (763.2 nm) from the hyperspectral UAS imagery. Classification validation was performed using
both the reference segments and the two transects. For the reference object validation, mean accuracies
were between 70% and 72%. Classification accuracies based on the validation transects achieved a
maximum overall classification accuracy of 93.

Keywords: hyperspectral; UAS; native grassland; random forest

1. Introduction

The Midlands region forms the primary agricultural region within the Australian State of
Tasmania. The region was once populated by expanses of native grasslands and open woodlands [1].
However, these communities have seen a significant decline since European colonization began.
Throughout subsequent years, native vegetation has been replaced by traditional European crop and
forage species as agricultural land use in the region intensifies. Native vegetation communities still
remain in the region, and are often used for grazing of sheep and cattle. However, the economic
return associated with native grassland grazing is poorer than for introduced pasture species due
to a lower nutritional value within the vegetation [2]. As a result, native grassland community
extent has been steadily declining. Although the exact extent of native grassland vegetation lost is
unknown, the estimated loss of community extent is estimated to be between 60% [3] and 90% [4] of a
pre-colonial extent.

Collectively, the major grassland community types of the region are known as the lowland native
grasslands. These communities form the Midlands biodiversity ‘hotspot’ [4], and contain an estimated
750 species, of which 85 are protected under Tasmanian or Federal Australian environmental protection
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laws [2,5]. The high level of biodiversity within these communities, coupled with the major threat of
habitat loss due to expanding agricultural practices, has created a desperate need for novel approaches
to mapping and monitoring of vegetation communities in the region. Community maps of native
vegetation within the Midlands region are often incomplete or outdated [6], and, as a result, remote
sensing has been proposed as a potential answer, due to its ability to provide frequently updateable
maps of vegetation community extent and condition. However, due to the small patch size of remnant
communities [4], coarse spatial resolution satellite-based approaches have proven to be moderately
successful [7]. The rise of Unmanned Aerial Systems (UAS) in recent years, therefore, provides a
unique opportunity to capture ultra-high spatial resolution data products that can be used to improve
upon currently existing mapping approaches in the region.

The application of Unmanned Aircraft Systems (UAS) for environmental remote sensing
applications has become increasingly prevalent in recent years. The ability of UAS to provide ultra-high
spatial resolution datasets (<20 cm pixel size) at a relatively low cost makes them an attractive option for
many researchers in this field [8]. The development of commercially available, ‘off the shelf’ platforms
has led to a rapid increase in the applications for which UAS have been used in environmental sciences.
The applicability of UAS for grassland monitoring and mapping is particularly attractive due to the
ability of such systems to collect spatially detailed datasets on demand. This ability is integral to
grassland remote sensing due to the high seasonal variability observed in communities [9–11].

Several studies have employed UAS as the principle platform in grassland research [12–14].
Although applications are primarily focussed on small-scale studies of agricultural productivity, such
as estimating biomass [15], several studies have focussed on broader-scale ecological applications of
UAS for various applications within grassland environments such as monitoring degradation and
change [16], mapping species regeneration post-fire [17], estimating ground cover in rangelands [18],
identifying grassland vegetation [19], and assessing species composition [13]. The most prevalent area
of grassland research using UAS, however, is for rangeland monitoring and mapping. Extensive
work has been undertaken, particularly in the South Western United States, to determine the
feasibility of UAS for broad-scale, high spatial resolution analysis of semi-arid grassland and shrub
communities [14,20,21].

The majority of remote sensing studies using UAS within the realm of ecological research have
focused on the use of ultra-high spatial resolution datasets collected using broadband multispectral
sensors [22] or RGB cameras [16] due to their low cost [8]. The use of broadband multispectral sensors
is not always capable of providing sufficient spectral detail for accurate analysis of vegetation types and
attributes, even when the data are acquired at high spatial resolutions. Applications of hyperspectral
sensors using UAS platforms are still limited in general. However, there is an increasing body of
work investigating their applicability in fields such as precision agriculture [23–28]. Due to the fact
that the majority of previously available high spectral resolution sensors are based on push broom
designs, the high fidelity Global Navigation Satellite System (GNSS) and Inertial Measurement Unit
data were required for the creation of useable outputs [23,29]. This issue has led to limited use and
application of UAS mounted hyperspectral sensors within the ecological remote sensing community.
The development of frame-based and snapshot hyperspectral cameras, however, eliminates the need
for complicated geometric processing, and makes the collection of hyperspectral datasets from UAS
much more feasible. The use of such sensors has enormous potential for ecological vegetation mapping
and monitoring due to the high degree of spectral information captured. This study aims to show the
potential of a frame-based hyperspectral system for the vegetation community mapping in a highly
heterogeneous grassland environment. Previous studies [7,30] in the area have identified a need to
investigate the utility of hyperspectral systems in such environments, and this study aims to provide
an important test case to improve lowland grassland community mapping through the use of novel
sensor technologies.
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2. Materials and Methods

2.1. Study Site and Vegetation Communities

In November 2015, imagery was collected at the Tunbridge Township Lagoon (42◦08′52.36′′,
147◦25′45.50′′), in the Tasmanian Midlands. The town of Tunbridge is located between the two major
settlements of Hobart and Launceston, and marks the divide between the Northern and Southern
Midlands regions. The lagoon serves as the only formally protected lowland native grassland habitat
in Tasmania, and contains important remnant vegetation patches and many endangered species.
The reserve covers an area of approximately 16 ha, and has wide floristic diversity. The western third
of the site is populated by remnant Themeda triandra grassland and interspersed with Acacia dealbata
and Bursaria spinosa. This portion of the site is steeply sloped in an easterly aspect. The remaining two
thirds of the site are predominantly flat, and covered with a saltwater lagoon. The saltpan surrounding
the lagoon is populated by many saline tolerant ground cover species, such as Wilsonia rotundifolia,
Sellieria radicans, and, in places, the Australian Saltmarsh grass Puccinellia stricta. The areas between the
saltpan and the bounding western and southern fences are populated by remnant Danthonia trenuior
and Poa labillardierie grasslands. Vegetation communities are generally in good condition, although the
southern side of the lagoon and a small area at the foot of the hill immediately adjacent to the lagoon
is still recovering from unplanned burning in the summer of 2014.

For the purpose of this study, a subset of the total reserve area was targeted. This area is
found on the south-western corner of the lagoon, and covers a transitional area between saltmarsh
vegetation, native grassland communities dominated by Danthonia trenuior or Poa labillardierei, and
the foot of the hill dominated by Themeda triandra. A total of four vegetation classes were identified
for analysis, as well as a soil class. The first class consists of the saline vegetation communities found
surrounding the lake including the succulent Selliera radicans and the ground cover Wilsonia rotundifolia.
The second class covers the range of native grassland communities adjacent to the lagoon, which
are called Danthonia trenuior and Poa labillardierie dominated areas. The common feature among
these communities is that they all follow the C3 photosynthetic pathway. The third class covers
the Themeda triandra remnant patches found on the western slopes of the site. The fourth class is
representative of the scattered Acacia and Bursaria specimens found among the Themeda grassland, and
the final class consists of exposed soils found within the lagoon.

2.2. Data Collection

Data was collected using a multi-rotor UAS (DJI S1000) for hyperspectral imagery, and a
fixed-wing UAS (Phantom FX-61) for RGB imagery. Hyperspectral imagery was collected using
a PhotonFocus MV1-D2048x1088-HS02-96-G2-10 (www.photonfocus.com), which is a 25 band
hyperspectral snapshot camera, with a spectral wavelength range from 600 to 875 nm and average
FWHM (Full-width Half Maximum) of 6 nm. The wavelength range of the camera was selected based
on previous research identifying this spectral region as containing key areas of separability for lowland
native grassland communities [7,30]. The camera houses a hyperspectral chip manufactured by IMEC
with 25 band-pass filters mounted on top of the sensor’s pixels in a 5 × 5 mosaic pattern. The 25 bands
are captured simultaneously and the pixels are organised in a hypercube of 409 by 216 pixels, and
resampled to 20 bands after spectral correction. Table 1 gives the central wavelength for each of the
20 bands. The camera captured images at 4 frames per second (fps). We used a 16 mm focal length
lens providing a field of view of 39◦ and 21◦ horizontal and vertical, respectively. The camera was
mounted on a gimbal on a DJI S1000 multi-rotor UAS, and flown in a grid survey pattern at 80 m above
ground level with a flight line separation of 22 m providing 60% side overlap between flight strips
and 97% forward overlap. The ground sampling distance (GSD) of the raw imagery was 3 cm, but,
after spatial and spectral resampling, this was reduced to 15 cm. The flight track was recorded with a
navigation-grade global navigation satellite system (GNSS) receiver (zti communications Z050 timing
and navigation module, spatial accuracy 5–10 m), and each hyperspectral image frame was geotagged
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based on GPS time. One hundred images were captured before the flight with the lens cap on the
camera and averaged to collect a dark current image. Another 100 images were captured on the ground
of a Spectralon panel directly before and after UAS flights to apply a vignetting lens correction and to
allow for conversion of DN values to reflectance. A Python script was developed to process the raw
camera data into hypercubes with reflectance values. The resulting images were exported to the GeoTiff
format and imported into AgiSoft Photoscan (with their corresponding GPS coordinates). The Structure
from Motion (SfM), dense matching, model generation, and orthophoto generation processing steps
were performed in a Photoscan based on band 14 (801 nm). Additionally, 22 photogrammetric ground
control points were randomly distributed across the study site and coordinated with a dual frequency
geodetic-grade RTK GNSS receiver (Leica 1200), which resulted in an absolute accuracy of 2 to 4 cm.
A 348 m by 255 m hyperspectral ortho-mosaic of the full scene was produced for further analysis. Sky
conditions were clear and sunny during all UAS flights. The hyperspectral flights occurred during a
one-hour time window around solar noon. Figure 1 shows an overview of the study site using the RGB
UAV imagery, as well as the footprint of the hyperspectral dataset. Figure 2 shows the hyperspectral
orthophoto loaded as a false-color RGB composite using bands 14, 5, and 1 (801.7 nm, 668.1 nm, and
612.8 nm). Reflectance values are shown for the subset areas of each class.

Table 1. Spectral band designations for the 20-band hyperspectral PhotonFocus dataset.

Band Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Center
Wavelength (nm) 612 620 643 651 668 676 684 712 737 751 763 776 789 801 813 825 842 854 864 872

Figure 1. Overview of Tunbridge Township Lagoon showing extent of the lake, and distribution of
vegetation communities. The extent flown by the hyperspectral sensor within the large site is shown
in red.
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Figure 2. Vegetation communities found within the study site, as represented by the 14 cm ortho-mosaic.
Central panel shows the overview of the study site, with image subsets showing general appearance of
classes within the scene. Example spectral signatures are given for each class, based on the 20 spectral
bands of the orthomosaic, as collected by the PhotonFocus hyperspectral sensor.

Additionally, an RGB camera was flown on a fixed-wing UAS at a height of 80 m (Sony alpha 5100,
20 mm focal length lens, FOV = 60◦ × 43◦, shutter speed 1/1000 s, GSD = 1.7 cm, forward overlap 80%,
side overlap: 70%). An RGB orthophoto mosaic was produced 1.7 cm spatial resolution in Agisoft
Photoscan using the SfM workflow described earlier. The Ground Control Points (GCPs) were used in
the bundle adjustment, which produced an RGB orthophoto mosaic with an absolute spatial accuracy
of 2 cm. A 15 cm spatial resolution digital surface model (DSM) was derived from the 3D dense point
cloud and triangulated model. From this DSM, the slope was derived using the surface toolset in
ArcGIS 10.3 [31]. The RGB DSM and Slope model were used in the analysis over the hyperspectral
outputs due to a better horizontal and vertical accuracy.

For validation purposes, two 100 m transects, as shown in Figure 3, were established at the site
during aerial data acquisition. The transects covered the Wilsonia, Danthonia, and Themeda classes
over an area in which the communities intergrade significantly. Transects were run east to west
across the center of the study area. Observations of plant communities were taken every meter
along each transect. A polygon representing the observation area was then digitized in ArcGIS 10.3
for each point along the transect, and assigned the relevant class based on the field observations.
Training points for the classification model were based on field observations acquired from 5 × 5 meter
transects established in November and December 2015. Transect centroids were generated based on
random stratification within the site and the coordinates of ground control points used for the UAS
data acquisition. For each transect, a tape measure was aligned north to south, and the vegetation
community was recorded every 1.25 m along the tape for a total of five observations. Observations
were then taken east to west every 2.5 m, for nine observations. The majority vegetation community for
the transect area was then determined and used as the classification label. For each transect centroid,
a GPS coordinate was acquired, and imported into ArcGIS 10.3. Based on each point, a five meter
buffer was generated and a series of points spaced 15 cm apart were generated within the bounds of
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the buffer zone. Furthermore, 15 cm was selected as the point spacing since this matched the spatial
resolution of the final ortho-mosaic generated from the UAS dataset. Vegetation classes were assumed
to be uniform within the entire 5 m zone, and care was taken to ensure that no transitional transects
were used for training purposes.

Lastly, a set of reference segments representing homogeneous class regions were digitized for
the four vegetation classes to serve as additional validation. Object size varied relative to class extent,
which was between 1 m2 and 100 m2. Additional validation data was manually digitized in order
to create an adequate sample size for classification validation and because there were no recorded
observations for the Acacia class, based on the 100 m transects. It was found that the two 100 m transects
failed to provide an appropriate number of validation points for some vegetation classes. Figure 3
shows the distribution of the 5 m buffered training zones, the validation transects, and manually
digitized reference polygons within the study site.

 

Figure 3. Distribution of training and validation points throughout the study site. Hashed areas
indicate data used for training, while un-hashed polygons were used for validation.

2.3. Random Forest Training and Classification

Image segmentation was performed using the Multiresolution Segmentation Algorithm [32] in
eCognition based on the 20 spectral bands of the orthomosaic, the DSM, and the slope model. A scale
factor of 1700 was used, with the compaction factor set to 0.1, and the shape factor set to 0.9. The DSM
and slope model were included in the classification approach since they were previously found to be
of high importance for classification of these communities [7]. The DSM was not converted to a canopy
height model due to the low height of vegetation in some sites of the study area (<1 cm in some areas).
Once the segmentation had been completed, a random forest model was trained for classification.
Training and classification were performed on the 20 band ortho-mosaic, the DSM, and the slope layers.
Since the number of input variables was equal to 22, the number of variables to try (mtry) was set equal
to 4, since the established optimal parameter value is equal to

√
m, where m is the number of variables

used [33,34]. Internal cross-validation accuracies were obtained for the model, in addition to variable
importance measures. Validation of the classification results was performed twice including once
using the digitised reference objects, and a second time based on the 100 m transects. The reference
objects and transects were not merged into a single validation dataset due to the difference in the
scale of analysis between the two datasets. Merging the transect observation areas into the larger
reference segment area would, therefore, result in this fine spatial scale of the observations being
lost due to the large discrepancy in the area of analysis between the two datasets. Validation was
performed using the reference segments in order to provide a large-scale estimate of accuracy across the
entire scene, and also to ensure that an adequate number of validation points was used for each class.
Validation using homogeneous reference segments also enables the evaluation of misclassification
due to over-segmentation. The field transects were used as a secondary source of validation since
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they provide valuable data about the sensitivity of the sensor and classification results to transitional
zones between communities. The high spatial frequency of observations along the transects allows
for accurate determination of the exact point of change between vegetation types. Since community
intergrading has been identified previously as being a significant source of classification confusion for
these communities [7], the decision was made to collect data capable of evaluating the sensitivity of
the segmentation scale and classification approaches.

3. Results

3.1. RF Training and Variable Importance Measures

Table 2 shows the confusion matrix and training accuracies obtained from the RF internal
cross-validation. Class values are given as a pixel count, while accuracy is given as a percentage.
The overall training accuracy was 97.44%. The obtained accuracies are high for all classes, with the
Themeda and Acacia classes having slightly lower accuracies than the Wilsonia and Danthonia/Poa classes.
There is very little confusion between classes, which indicates good potential class separability within
the dataset.

Table 2. RF training accuracy and confusion matrix for all classes. Confusion matrix values are given
as a pixel count, while accuracy is reported as a percentage.

Wilsonia Danthonia Themeda Soil Acacia Accuracy (%)

Wilsonia 35,565 277 0 36 0 99.13
Danthonia 343 54,725 693 0 1 98.14
Themeda 0 3473 48,293 0 19 93.26

Soil 3 0 0 55,778 0 99.99
Acacia 0 123 345 0 7740 94.29

Figure 4 shows the variable importance measures obtained from the RF training model for each
class. The DSM has a very high importance score relative to the other variables, and is identified
as highly important for all classes. The most important spectral bands are bands two (620.9 nm),
seven (684.9 nm), and eleven (763.2 nm). The Danthonia class has high importance values for these
bands compared to the other classes. The Themeda class has the highest importance value for the DSM.

Figure 4. RF variable importance models obtained from the training model for each class.

3.2. RF Classification Results and Accuracy

Figure 5 shows the classification results obtained from the RF model. Delineation of class
boundaries is clear and matches expected distributions. There is some misclassification between
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Wilsonia and the soil class evident in the center of the scene. The transitional zones between the two
grassland types Danthonia/Poa and Themeda are clearly demarked. Areas of disturbance within the
Themeda community are also clearly visible. There is significant omission within the Acacia class.

Figure 5. Random Forest classification results for all community classes. General class delineation
is good. However, there is a significant omission and commission of the Acacia class, and some
observable confusion between the Wilsonia and Danthonia classes.

Table 3 gives the final RF confusion matrix and User’s and Producer’s accuracies based on the
accuracy assessment undertaking using the digitized reference segments. The final overall accuracy
for the result is 71.8%. The Users’ accuracy was obtained by calculating the percentage of all image
objects identified as a given class that were correctly identified. Producers’ accuracy was obtained by
calculating how much of the reference area for a given class was correctly classified. Users’ accuracies
for the Wilsonia, Themeda, and Acacia classes are 98%, 92.4%, and 92.6%, respectively. Additionally,
the users’ accuracies for the Wilsonia and Themeda classes show similar values. The producer’s accuracy
for the Acacia class was also low at 41.9%. The producer’s accuracy for the Danthonia class is 98.4%.

Table 3. Confusion matrix, User’s Accuracy, and Producer’s Accuracy for all classes based on evaluation
against the manually digitised reference segments. All values are percentages.

Wilsonia Danthonia Themeda Acacia Soil User’s Producer’s

Wilsonia 98 1.9 0 0 0.01 98.0 38.4

Danthonia 54.5 41.3 4.2 0 0 41.3 98.4

Themeda 0 0 94.2 5.7 0 92.4 95.3

Acacia 0 0 7.4 92.6 0 92.6 41.9

Table 4 reports the validation results based on the two 100 m transects. A mean User’s accuracy
of 85.1% was achieved. The type of confusion is similar to that observed in the evaluation based
on the reference segments. Primarily, confusion occurs between the Wilsonia and Danthonia classes.
General patterns of classification accuracies for the three classes were similar to those in the previous
assessment, with Wilsonia having poorer performance than the two grassland classes. Since there were
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no recorded observations of the Acacia class along either of the two 100 m transects, the class has been
excluded from the accuracy assessment here.

Table 4. Confusion matrix and per class User’s and Producers’ accuracy for the three vegetation classes
covered by the validation transects. Confusion matrix values are given as percentages.

Wilsonia Danthonia Themeda User’s Producer’s

Wilsonia 100 0 0 100 73.2
Danthonia 13.9 86.1 0 86 83.1
Themeda 0 23.4 76.6 76.2 100

4. Discussion

The accuracies obtained for the RF training model are much higher than the accuracies obtained
for any of the final classification results. The presence of significant discrepancies between validation
and training accuracies can indicate potential bias in the sampling regime, or unrepresentative training
datasets. Since the number of input points was high (~250,000), it was decided that a single RF
model was to be derived. The high spatial resolution of the dataset (14 cm) means that very fine-scale
variations in species composition can potentially be detected. Since training points were derived
over a 5 m plot area to emulate the conditions, there is potential to incorporate multiple thematic
classes within a single plot. Conversely, however, the use of small numbers of widely dispersed pixels
may lead to a failure to properly account for class variability in the training and classification stages
of analysis.

The variable importance measures obtained show a very high importance for the two topographic
variables. Spectral variables have significantly lower importance values for each class, and all classes
have their highest importance level recorded for the DSM. The high importance value assigned to
the DSM in the Themeda class is due to the class occurring exclusively on the hilly area within the
study site, whereas the Danthonia and Wilsonia classes occur on the flat saltpan surrounding the
lagoon. This difference is of key importance due to similarities in the canopy structure between the
Themeda and Danthonia classes, which may potentially lead to confusion between the two classes
during classification.

Classes exhibit different importance levels across the range of spectral input bands, with the
Danthonia class having the highest overall spectral importance values. Key bands of importance for
this class include band two (620.9 nm), 11 (763.2 nm), and 14 (801.7 nm). The observed regions of
importance align with those identified in previous research [7]. All other vegetation classes have
comparatively low spectral importance values. Low importance values for the spectral variables
is likely a result of high correlation between the bands. The high values for spectral bands in the
Danthonia result is likely due to similarities between the physical distribution of the Danthonia and
Wilsonia classes, since both only occur on the same flat region of the saltpan. Since these two classes
intergrade significantly, and cannot be differentiated based on topography, spectral bands are the
only available source for differentiation with the RF model. This is likely to contribute to the poor
performance of the class overall since previous studies undertaken at this site indicate great difficulty
discerning between the Danthonia and Wilsonia classes due to their similar photosynthetic pathway
and phenological staging [30].

The primary source of inaccuracy in the classification results was confusion between the Danthonia
and Wilsonia classes. The confusion in this case was only in one direction, in that a large proportion of
the Danthonia class was erroneously classified as Wilsonia, while there was very little misclassification
of Wilsonia as Danthonia. As the two communities intergrade extensively, the establishment of discrete
reference objects for validation was very difficult even within the two 100 meter transects. Inaccuracy
when creating these reference objects is likely to be the case of the poor overall accuracy obtained for
the Danthonia class. Since the two classes occur in the same geographic area, primarily on low-lying
saltpan, the DSM and slope variables are not likely to increase separability between the two classes.
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The Danthonia class exhibits significantly different final classification accuracies between the validation
performed using the reference objects and the validation based on the image transects. The observed
differences in classification accuracies between assessments based on the validation transects and
manually digitized objects indicate that there is a need to collect high spatial resolution validation
datasets in order to accurately assess the performance of classifications in this case.

This paper shows that discrimination between similar vegetation communities can be successful
using hyperspectral, frame-based UAS mounted sensors. The spectral range of the sensor used in this
case is quite narrow, with bands only covering the red and near-infrared portions of the spectrum from
600 to 875 nm. The use of a sensor with an expanded range into the visible portion of the spectrum
may potentially improve classification outcomes, due to an increased ability to detect unique spectral
properties of communities. The ability of the sensor to successfully discriminate between communities
is most apparent in the results of the two grassland communities. The main difference between these
communities is that they have different photosynthetic pathways. Many studies have shown that
differentiation of grassland species based on photosynthetic pathway and phenological variation is an
appropriate method [35,36]. The dataset used in this scenario was acquired at a time of year where the
Themeda grassland was entering a period of senescence, and the Danthonia/Poa grassland was beginning
its annual growth cycle. The results shown in this paper reiterate the findings of previous studies
that have shown that phenology is a critical component of the grassland community identification.
The overall findings of this paper suggest that frame-based hyperspectral UAS mounted sensors
can be used to successfully differentiate between native grassland communities with a high degree
of accuracy.

5. Conclusions

This paper presents the results of an RF classification approach for identifying lowland native
grassland communities in the Tasmanian Midlands using high spatial and spectral resolution UAS
imagery. The findings of this study indicate that high spectral resolution UAS datasets can provide
detailed community discrimination at a fine spatial scale, and show great potential for community and
species level mapping. The higher classification accuracies obtained for the transect validations indicate
that accurate assessment of community gradients requires the collection of high spatial frequency field
observations over a large area. The small extent covered by the two transects means that assessment of
communities in this manner is limited for this result. Future studies could benefit from the creation of
multiple transects with closely spaced observations to aid in a more robust assessment of classification
results. This paper presents an important case-study that show-cases the use of a hyperspectral UAS
mounted sensors for ecological community classification. The results of this study indicate that the
sensor used here is particularly useful in the discrimination of grassland communities.
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Abstract: Long-term ecological research (LTER) sites need a periodic assessment of the state of their
ecosystems and services in order to monitor trends and prevent irreversible changes. The ecological
integrity (EI) framework opens the door to evaluate any ecosystem in a comparable way, by measuring
indicators on ecosystem structure and processes. Such an approach also allows to gauge the
sustainability of conservation management actions in the case of protected areas. Remote sensing
(RS), provided by satellite, airborne, or drone-borne sensors becomes a very synoptic and valuable
tool to quickly map isolated and inaccessible areas such as wetlands. However, few RS practical
indicators have been proposed to relate to EI indicators for wetlands. In this work, we suggest several
RS wetlands indicators to be used for EI assessment in wetlands and specially to be applied with
unmanned aerial vehicles (UAVs). We also assess the applicability of multispectral images captured
by UAVs over two long-term socio-ecological research (LTSER) wetland sites to provide detailed
mapping of inundation levels, water turbidity and depth as well as aquatic plant cover. We followed
an empirical approach to find linear relationships between UAVs spectral reflectance and the RS
indicators over the Doñana LTSER platform in SW Spain. The method assessment was carried out
using ground-truth data collected in transects. The resulting empirical models were implemented for
Doñana marshes and can be applied for the Braila LTSER platform in Romania. The resulting maps
are a very valuable input to assess habitat diversity, wetlands dynamics, and ecosystem productivity
as frequently as desired by managers or scientists. Finally, we also examined the feasibility to upscale
the information obtained from the collected ground-truth data to satellite images from Sentinel-2 MSI
using segments from the UAV multispectral orthomosaic. We found a close multispectral relationship
between Parrot Sequoia and Sentinel-2 bands which made it possible to extend ground-truth to map
inundation in satellite images.

Keywords: UAVs; ecological integrity; LTER; LTSER; multispectral mapping; ground-truth; Parrot
Sequoia; Sentinel-2

1. Introduction

Rapid assessment of ecosystem status, both functioning and structure, has become a major
requirement for managers and conservationists in choosing response to disturbances or understanding
global change effects at local scale [1]. Humanity is failing to make sufficient progress in confronting
grand environmental challenges, and alarmingly, most of them are getting far worse [2]. One of the
most informative ways to retrieve a quick conservation status picture of either habitats or species
is based on survey and long-term monitoring programs [3,4]. Long-term ecological research (LTER)
networks are informing about the factors driving changes in biodiversity, the self-organizing capacity
of ecosystems, the effects of rare events and disturbances, the impacts of stressors on ecosystem
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function, and the interactions between short- and long-term trends [5]. These LTER networks rely
on site-based monitoring and research by providing data and detecting trends identifying drivers
and pressures. However, there is a need for methods and parameters harmonization in order to
enhance sites comparisons and identify global patterns. The regional European LTER network, named
LTER-Europe (www.lter-europe.net), has developed and adopted a new framework to easily derive
ecosystems state from selected indicators: the ecological integrity (EI) framework. The idea of EI
is based on the principle for precaution against ecological risks in the framework of sustainable
development. The EI framework combines biotic and abiotic aspects of ecosystems with ecosystem
structures and processes [6,7]. Its aim is to safeguard relevant ecosystem services and preserve
the capability to continue self-organized development of systems and services, by becoming more
complex systems or adapting to change. The ecological integrity framework has enabled indicator
selection and enhanced data integration and upscaling for individual LTER sites. In addition, in 2007,
the LTER-Europe network introduced the concept of long-term socio-ecological research (LTSER).
This approach extends LTER concept to coupled socio-ecological (or human-environment) systems.
LTSER aims to provide a knowledge base that helps to reorient socioeconomic trajectories towards more
sustainable pathways [8]. LTSER platforms, inside LTER-Europe network (Figure 1a), are extensive
landscapes characterized by manifold interactions between society and nature, ranging from strict
conservation areas to intensively used ones [9].

While seeking fast assessment of large and inaccessible areas such as LTSER wetlands, synoptic
tools become essential to provide the required integrative view. For this purpose, managers turn
usually either to the use of in situ measurements or estimates from automatic or handheld sensors and
probes or to ad-hoc sampling procedures [10]. In such cases, data collected by these means can point
out local changes or trends but it will seldom inform on spatial gradients or reveal under-sampled
locations. At this point, remote sensing imagery becomes the major contributor to spatially visualize
and locate any kind of environmental threat or disturbance such as wildfires, eutrophication processes,
flooding, etc. Optical images captured from Earth observation mid-resolution satellites (tens of meters)
are widely available for free, such as the ones captured by Landsat or Sentinel missions. However,
high- and very-high-resolution images (from centimeters to few meters) are costly and have to be
pre-ordered and programmed to be acquired over the study area. In the former case, scenes are
periodically acquired enabling to build a time series of images to address temporal changes and
trends at the landscape scale. In the latter, finer resolution allows for detailed habitat mapping for
instance, while dramatically increasing costs. The same is also true for airborne photogrammetric
campaigns either with photogrammetrical, multispectral, or hyperspectral sensors on board of planes.
Conversely, UAVs can be flown over the same area as frequently as required, only constrained by
weather conditions or legislation, becoming a suitable monitoring tool for any target. As a major trait,
UAVs provide the opportunity to define spatial resolution as detailed as requested according to the
mission objectives [11] constraining the total area covered per unit of time. Yet it is not the only role
played by UAVs as they can play the role of ground-truth for other sensors either airborne or onboard
of satellites, while overflying large and remote or inaccessible areas. Rapid growth of commercial UAVs
and affordable prices together with the increase on the innovative offer of miniaturized multispectral
sensors and cameras is widely spreading their use across the globe. Just a few years ago, dealing with
mission planning and post-processing was also a challenge. Nowadays, integrated solutions such as
the one provided by SenseFly© are offering accurate and endurable platforms such as the Sensefly eBee
able to carry different airborne cameras. Thermal, visible or multispectral cameras can be mounted
alone in its single pod. The company also provides a very integrative post-processing solution with
Pix4D© software, enabling to carry out complete missions in very short time for many applications
on protected areas. Actually, UAVs are mainly used to monitor crop health and status by upscaling
physiological variables applying model inversion methods [12]. Very few studies have addressed
similar topic for other environments such as rangelands but none for natural wetlands [13,14].
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In this paper, we assess the applicability of UAV borne multispectral cameras for fast mapping of
the ecological state of two LTER wetlands following the ecological integrity framework. We evaluate
several indices proposed to retrieve the necessary information to assess the inundation level, the plant
and open water cover, plant height, and water turbidity and depth. We confirm that the derived
maps can contribute to enhance and enlarge the area to be used as ground-truth data for satellite
remote sensing images (in this case, we used Sentinel-2 images). The easiness and high performance of
multispectral cameras on board of fixed wing UAV is demonstrated while offering fast EI assessment
and ground-truth for satellite remote sensing images.

2. Study Sites and Conservation Issues

2.1. The Doñana LTSER Platform

The Doñana LTSER Platform is located SW of Spain (Figure 1c). It is a UNESCO Biosphere Reserve,
a Ramsar Site, and a Natural World Heritage Site. It includes the largest wetland in Western Europe and
a large dune ecosystem with its respective shoreline and representative terrestrial plant communities.
The area is home to many species, including the Iberian lynx and the imperial eagle. The Doñana
marshes play a critical role as a stopover, breeding and wintering point for thousands of European,
Iberian and African birds. The long-term ecological monitoring program focuses on threatened species
and habitats and uses a multi-scale approach [15]. Conservation objectives include the preservation
of critically endangered species, the abundance of waterfowl, and the protection of Mediterranean
wetlands and terrestrial ecosystems. Data are systematically collected on vegetation, threatened flora,
limnology, mammals, birds, amphibians, and reptiles in an integrative way [4]. Doñana marshes,
which cover an extent of 260 km2, provide important ecosystem services such as aesthetic, spiritual,
scientific, and eco-tourism provided by waterbirds under the cultural domain or grazing for cattle
under the provisioning domain and nutrient cycling and water purification as regulating or supporting
services. [16,17]. So, mapping inundation levels, hydroperiod, water turbidity and depth, together
with aquatic plant cover becomes essential to characterize ‘within-habitat structure’, ‘habitat cover’,
or ‘water quality’.

2.2. The Braila Island LTSER Platform

The Braila Island LTSER platform is located in the small island of Braila in the Danube River,
southeast Romania (Figure 1b). The Small Island of Braila is especially rich in bird species. Together
with the coastal Danube Delta, the wetland system is an important stepping stone for bird migration
routes in southeastern Europe. This socio-ecological system is inhabited by near 300,000 people and
comprises heavily modified ecosystems (e.g., Big Island of Braila) but also systems under a natural
functional regime (e.g., Small Island of Braila), being of a crucial natural and socio-economical value.
Most of the area has been drained for agricultural purposes. As a consequence, connectivity between
the Danube and the floodplains is very limited [18]. The Danube river in the Braila Islands section has
been ranked as a heavily modified water body according to criteria 2.1 (embankment works) due to
the hydro-technical works on 79% of the river stretch sector and a candidate to “heavily modified”
according with the WFD criteria 2.2 (regulation works) as a result of dredging of 21% of the river bed
for intensive navigation. The main remnant of the natural floodplains consists in the wetlands from
the Small Island of Braila Natural Park with a total surface of 210 km2 and the floodplains between
the riverbanks and dikes of almost 93 km2 [19]. Water quality in this stretch of the Danube River is
also rated as moderate. The main pollution sources are agriculture, industry, navigation, and domestic
households. Also in Braila Island, periodic mapping of inundation levels, water turbidity and aquatic
plant cover as well as floodplain tree cover are crucial to identify sudden changes in management
affecting flooding.
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Figure 1. (a) Location of the 28 LTSER platforms in Europe on top of biogeographical regions (modified
from Mirtl et al. [9]). Many more have been created in other LTER regional networks [20]. (b) Zoom in
at Braila Island LTSER platform limits (yellow line) and the study area where we carried out the UAV
flight (green square). (c) Zoom in at Doñana LTSER platform limits (yellow line) and the study area
(red line).

3. Materials and Methods

3.1. Practical Remote Sensing Indicators for Rapid Ecological Integrity (EI) Assessment of Wetlands

Structural EI components are based on biotic diversity and abiotic heterogeneity. The components
of processes (input, output, storage) are related to energy, matter and water balances. Structural and
process components are interrelated and may be used to reflect states, changes and pressures enabling
fast assessment of the protected area. However, although the recent work by Haase et al. [5] conveys
the links between EI indicators and the essential biodiversity variables (EBV) [21], there is still much
work to do in order to retrieve such valuable information using remote sensing tools [22,23].

In our case, we are dealing with rapid assessment of wetlands sharing similar pressures and
drivers. As water is the main agent defining states, the most significant indicator is water presence
or inundation level. Water presence or absence in the wetlands is essentially informative to water
input at the water budget component of processes in the EI framework (Table 1). While revisiting
the same place, hydroperiod can be easily retrieved as a function of inundation residence through
time, informing on water storage for the wetland. Table 1 shows some examples of remote sensing
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indicators, which can be easily mapped and directly related to EI indicators in wetlands (rivers, lakes
or coastal shallow wetlands). Some references are also provided, although mostly based on satellite
remote sensing we include many of them using UAVs borne sensors. Many more references on every
indicator are available in the literature.

Table 1. Examples and references of remote sensing applications related to EI indicators in wetlands.
Those in red were used in this study. Modified from Haase et al. [5].

Elements of
Ecological
Integrity

Indicators of
Ecological integrity

Examples for Remote Sensing Indicators References

Aquatic plant cover mapping (emergent, floating, submerged) [24–26]

Floodplain forest species mapping [27,28]Flora Diversity

Alien species mapping [29–32]

Productivity estimates in birds colonies [33,34]

Animals abundance estimates with thermal mapping [35–37]Fauna Diversity

Input for Species Distribution [38–40]

Aquatic plant height [41,42]

Land use mapping in catchment [43]

Biotic Diversity

Within Habitat
Structure

Landscape indicators (connectivity, fragmentation) [44]

Water turbidity [45,46]

Water delineation, water depth [45,47,48]Water
Water temperature [49]

Water vapour content [50]Atmosphere
Net radiation [51]

St
ru

ct
ur

es

Abiotic
Heterogeneity

Habitat Digital terrain models [52,53]

Input Fraction absorbed of Photoshynthetic Active Radiation
(FaPAR) [54,55]

Chlorophyll concentration in open water bodies [56,57]

Net Primary Production [58,59]Storage

Phenology [60]

Albedo [61]

Energy Budget

Output
Heat Flux (SEB models) [62]

Water colour as a proxy for nutrients availability [63]

Algal blooms [64]Input
Sedimentation processes

Storage Aquatic plants biomass [16,65]
Matter Budget

Output Mapping of Grazing intensity

Input Inundation mapping [66]

Hydroperiod [67]
Storage

Water level estimated from water depth

Pr
oc

es
se

s

Water Budget

Output Evapotranspiration [68]

3.2. Multispectral Camera, UAV Mission Planning, and Image Processing

Among the wide offer of drones and cameras, we selected the eBee solution consisting of a Parrot
Sequoia multispectral camera integrated in the eBee fixed wing UAV [69]. The choice was based both
on the spectral bands (b1 green -550@40nm-, b2 red -660@40nm-, b3 red edge -735@10nm- and b4 near
infrared -790@40nm-) provided by Parrot Sequoia and the large flying extent provided by the eBee
plane (up to 40 ha in one single flight of 25′, with flight height 120 m and pixel size 11 cm). Additionally,
sequoia camera brings a sensor of irradiance in the upper side of the sensor which is concurrently
capturing irradiance while taking pictures [70] and a RGB sensor of higher resolution. A calibration
panel is provided with every unit to be pictured before flight allowing for bands reflectance calculation
after flight [71].
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Missions over Doñana marshes in Doñana LTSER platform and Braila LTSER platform were
designed to cover an inundation gradient (Figure 2). Both sites were flown with clear sky conditions
around 12 UTC at the maximum legal altitude (120 m above the terrain), perpendicular to the dominant
wind direction and beyond-visual-line-of-sight (BVLOS). In the case of Doñana marshes, the flight
covered the ecotone area between the sandy substrates and the marsh with variable inundation levels
and aquatic plant cover (Figure 2a). In order to guarantee safe and dry operation we took-off and
landed on the sandy substrates of the surrounding area. As the Small Island of Braila can only be
accessed by boat and is covered by dense floodplain forests, flight mission was designed according to
such constraints. Therefore, take-off and landing operations were carried out from the opposite river
bank (Figure 2b). Doñana flight was accomplished on 22 April 2017 and lasted for 25 minutes. Braila
flight took 27 minutes and was acquired on 1 August 2017.

 
Figure 2. UAV flight missions at (a) Doñana marshes and (b) Small Island of Braila. Image courtesy of
2018 Google©.

Radiometric calibration was simply achieved by reflectance calculation according to radiance
coefficients and irradiance measured at every picture center [72]. Pictures are geotagged with the
SenseFly eMotion software using the UAV flight logs and the set of pictures were introduced into
Pix4D© software to be stitched and generate a multispectral orthomosaic together with digital surface
model [73]. Figure 3 shows the general workflow of the study. Ground control points (GCP) for
geometric correction could not be established because inside the marshes we could not find any valid
lineal or conspicuous element to be used as reference in the flight area and we realized that the use of
artificial targets (made of canvas fabric) once placed over water were easily displaced by wind. Visual
geometric validation was carried out with the available high resolution images for every site (Google
satellite or Bing satellite) with recognizable features such as tree/shrub canopies, paths and fences at
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the edge of the marsh. Absolute root-mean-square error (RMSE) was calculated using seven visually
recognizable points in both layers.

Figure 3. Methodological workflow followed in this study.

3.3. Ground-Truth Sampling, Accuracy Assessment, and Remote Sensing Wetland Indicators Mapping

In order to assess UAV mapping accuracy we carried out field sampling over the Doñana marsh
study area immediately after the flight and Sentinel-2 image acquisition of the day. Ground-truth
was collected by walking the marshes following predesigned regular transects to maximize the total
area sampled across different inundated areas (Figure 4). Sampling points were located every 60 m in
visually homogeneous sites at least for a radius of 15 m. Different wetland indicators were collected at
every sampling point being originally representative of the 30 × 30 m Landsat TM and ETM+ pixel
size according to Díaz-Delgado et al. [67] methodology being also valid for Sentinel-2 10 × 10 m pixel
size. We recorded data contributing to EI indicators such as water turbidity, water depth, percentage
of bare ground, aquatic plant and open water cover, and plant species abundance and dominance
(Table 2). Geolocation of every point was recorded by means of PDA-GPS units with less than 3.3 m
horizontal position error on average.
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Table 2. RS wetland indicators collected as ground-truth with their categories and the spectral bands
and indices used in this study.

RS Wetland Indicator Categories/Range Spectral Bands/Indices

Water turbidity Continuous (1.41–471) Water turbidity index (WTI [46])
Normalized difference water index (NDWI [47])

Water depth Continuous (0–57) Normalized difference red edge (NDRE [74])

Plant cover per plant type
(emergent) 0%, 1–5%, 5–25%, 25–75%, >75% Normalized difference vegetation index (NDVI [75])

Normalized difference red edge (NDRE)

Plant height Continuous (3-150) Green band, vegetation height model (VHM)

Percentage of open water 0%, 1–5%, 5–25%, 25–75%, >75% NIR band

Inundation Non-inundated and Inundated NIR band

Dry bare-ground cover 0%, 1–5%, 5–25%, 25–75%, >75% Not tested

Plant type Emergent, floating, submerged, algae Not tested

Field data was used to analyze statistical relationships between Sequoia spectral bands and
different spectral indices (Table 2) applicable to retrieve wetlands EI indicators.

A random selection of 70% of ground data were used to explore linear modeling and a set of 30%
to independently test accuracy of every model. The assessment was based on the values of coefficient
of determination, R2 and RMSE. Accordingly, we used the best lineal fit to map the tested wetland
indicators. For inundation mapping we applied regression tree technique to discriminate between
inundated and non-inundated classes based on Sequoia NIR band reflectance values [67]. In this case,
classification accuracy was assessed with overall agreement (OA) and Kappa index. For plant height
we also explored the relationship with vegetation height model (VHM) obtained from the subtraction
of digital surface model (DSM) and digital terrain model (DTM) as applied by Bendig et al. [76]. DSM
and DTM are generated from the point cloud by Pix4D software using the photograms of the RGB
camera [77].

Finally, we assessed the discriminative ability of Sequoia multispectral bands to separate spectral
signatures of the most common dominant aquatic vegetation species including emergent, floating,
and submerged plants. We performed a separability analysis to assess the best band to discriminate
among the different pairs of aquatic plant species. For this purpose, we used the normalized distance
Z [78] which provides high values for the most different compared species.

3.4. Reflectance Comparison with Satellite Images

Both drone missions were set to be coincident with Sentinel-2 (S2) MSI acquisitions over the study
sites. Thus, S2 images were available for the same dates such as 22 April for Doñana and 1 August for
Small Island of Braila. S2 images were downloaded by using the semi-automatic classification (SAC)
plug-in implemented in QGIS [79]. An atmospheric correction is carried out in the pre-processing
of the S2 images based on the basic dark-object-subtract (DOS) technique, inspired in Chavez [80]
and Moran et al. [81]. DOS method approximates the path radiance value of a given band from the
minimum value of the histogram (dark object), assuming an intrinsic reflectance of the darkest object
(1%). The rest of the radiance received by the satellite sensor proceeds from the atmospheric path,
and must be then subtracted from every pixel before dividing the at-sensor spectral radiance by the
irradiance. The model assumes that the transmittance is 1. The SAC-QGIS method is quick and simple,
fully image-based, avoiding the need for atmospheric auxiliary data to perform the correction. It does
not account for topographic effects, a characteristic that is not relevant in the present study due to the
flat morphology of the study area.
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Figure 4. Location of ground-truth sampling points (red dots) in the Doñana study area. Background
is composed by Sequoia multispectral orthomosaic on top of Sentinel-2 image equivalent wavelength
composites (4-3-2 and 7-6-4).

Ground-truth points were used to compare Doñana Sequoia and S2 multispectral bands (Figure 3).
The S2 bands selected for comparison with Sequoia bands were the most similar in terms of spectral
resolution: B3 (560@45 nm), B4 (665@38 nm), B6 (740@18 nm), and B7 (783@28 nm). Bands 6 and 7 with
original pixel size of 20 m were resampled to the B3 and B4 spatial resolution (10 m). Assessment was
carried out by comparing R2 and RMSE values for band reflectance relationships (Figure 3). Reflectance
for Sequoia bands was obtained calculating the average of the pixels contained in one S2 pixel.

3.5. Upscaling of Ground-Truth Data

An upscaling essay was carried out to extend the information collected from ground-truth data
to the whole S2 image. We applied a segmentation on Sequoia multispectral orthomosaic. Sequoia
multispectral image was segmented using the four spectral bands using ‘segment mean shift’ available
in ArcGIS with the following specs: spectral detail 15.5, spatial detail 15, minimum segment size 20
pixels (2.60 m). Then we made a spatial assignation of ground point data to the whole extension of the
resulting spatially and spectrally homogeneous segments. Therefore, we used the labeled segments
to build regression tree for inundation mapping but this time using S2 spectral data from the pixels
inside the segments. The optimal threshold value was used to map inundation for the full S2 scene.
Overall agreement and kappa index were used as indicators for accuracy assessment.

4. Results

4.1. Geometric Accuracy of UAV Multispectral Orthomosaics

Table 3 shows the geometric characteristics of every mission. Despite the fact we could not
set up GCPs, the absolute root-mean-square errors (RMSE) of the orthomosaics were below 40 cm.
Such values are still useful to assess the RS wetlands indicators as a function of ground-truth data
collected to be homogeneous in 15 m around the point [67].

Figure 5 shows a visual assessment of geometric accuracy for the Doñana flight. Several distance
measurements between both layers in recognizable objects revealed geometric matching below 0.40 m.

116



Drones 2019, 3, 3

Table 3. Geometric characteristics of the UAV missions carried out over Doñana and Braila.

Flight Characteristics Doñana Braila

Ground sampling distance (cm) 12.85 14.03
Area covered (ha) 88.75 91.71
Number of images 1712 1380
Lateral overlap (%) 60 60

Longitudinal overlap (%) 80 80
Absolute RMS error (cm) 34 35.5

 
Figure 5. Overlay showing the edge of Sequoia multispectral orthomosaic on top of Bing Satellite in an
area where two tracks and plant canopies were used to visually check geometric accuracy.

The eBee plane travelled a total distance of 15.5 km over the Doñana study area and 12.5 km
across the Small Island of Braila.

4.2. Spectral Modeling of Remote Sensing Wetlands Indicators

A total of 73 ground-truth points out of 75 collected in the field, were finally used to analyze
linear relationships between Parrot Sequoia bands and different spectral indices with the wetlands
RS indicators. Figure 6 shows some of the resulting maps by implementing the most significant
relationships found for several RS indicators.

While Sequoia NDRE (Table 2) showed a significant and positive linear relationship with percent
cover of emergent aquatic plants (R2 = 0.67; Figure 6a), plant height of these helophytes showed a
significant but very low negative correlation with the Sequoia green band. Vegetation height from
the subtraction of digital surface and terrain models did not show a significant relationship (R2 = 0.01,
p > 0.1). The best predictor for percentage of open water was found to be the NIR band (Sequoia band 4)
showing a significant linear relationship (R2 = 0.46, Figure 6b) as expected according to the extinction of
this wavelength in water bodies (Figure 6). However, water depth variation was significantly explained
by NDRE but in a very weak manner (R2 = 0.36; RMSE = 13 cm) so we did not applied it.

Water turbidity variability was explored with visible bands and indices showing a significant and
positive relationship only for open water areas (>50% open water) with NDWI better than the one
with WTI. Accordingly, we applied the mapping model by using the classes >50% with percentage of
open water (Figure 6c).
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Figure 6. Resulting maps of (a) percent cover of emergent vegetation, (b) percentage of open water
(c) water turbidity for the open water area found inside the red square and (d) inundation for the
overflown area in Doñana marshes.

Regression tree optimally converged to 0.23 as the optimal NIR (Sequoia band 4) reflectance
threshold to discriminate inundated from non-inundated areas (Figure 6).

While assessing spectral signatures of the most common aquatic plant species, most of them
may easily be separated (Figure 7), specifically emergent aquatic plants such as grasses or saltmarsh
bulrush (Bolboschoenus maritimus) versus floating aquatic species as Ranunculus peltatus. However,
the less abundant species such as Eleocharis palustris and Damasonium alisma show spectral confusion
with saltmarsh bulrush. The presence of the alien species Azolla filiculoides under saltmarsh bulrush
canopy did not change the average reflectance of the helophyte alone.

According to separability analysis the best bands to discriminate among all the different pairs
of species comparisons were the red edge band (Average Z = 3.03) and NIR band (Average Z = 2.27).
The best discrimination was found between Ranunculus and grasses and between Ranunculus and the
bulrush (average Z = 3.99 and average Z = 3.16). The less informative band was found to be the red
band (average Z = 1.06) and the most difficult pair of species to be discriminated among each other
were bulrush and bulrush with Azolla, and bulrush with Azolla and Ranunculus.
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Figure 7. Mean spectral signatures of the different aquatic plant species found in the Doñana study area.

4.3. Reflectance Comparison with S2 Images

Visual assessment of overlay between S2 images and Sequoia spectral orthomosaics showed
good color agreement both for Doñana and Braila study areas (Figure 4). Some linear elements, such
as fences and buildings, were used to assess geometric matching which was always below one S2
pixel size.

Table 4 shows the values of the coefficient of determination (R2) calculated band to band between
Sequoia and the corresponding S2 spectral bands. RMSE are also provided for comparisons purposes.

Table 4. Overall band-by-band R2 and RMSE values (% reflectance units) between the spectrally similar
Sequoia and S2 bands.

GREEN RED RED EDGE NIR

R2 0.68 0.61 0.65 0.70
RMSE 0.06 0.04 0.03 0.05

Although most of the bands show very high and positive correlation, there are still some
discrepancies between both sensors. Consistently RMSE values are low, so that reflectances from both
sensors can be compared despite having different spectral resolution.

4.4. Upscaling of Ground-Truth Information from Inundation to S2 Images

After the application of segmentation to the multispectral Sequoia orthomosaic we extended the
ground-truth point information to the segments containing such points. This procedure enlarged the
sampling area from 0.51 ha (51 points assigned by location to 51 S2 pixels used for modeling) up to
14.47 ha. We tested the classification of inundated areas by estimating the optimal threshold using the
regression tree method, this time with the equivalent NIR band for S2, i.e., band 7. Reflectance values
lower than 0.1964 were classified as inundated for the Doñana marsh area in the S2 scene (Figure 8).
Overall agreement was 74% and kappa index value was 0.48.
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Figure 8. Upscaling process followed for the inundation mapping in Doñana LTSER wetlands.
(a) Segments map resulting from multispectral Sequoia image showing those intercepted by
ground-truth points (yellow polygons). (b) Location of selected segments (red extrapolated as
inundated and green as non-inundated from ground-truth points) on top of RGB composite from S2
bands 7, 6, and 4. (c) Resulting inundation map for Doñana marshes in the S2 scene. eBee picture
courtesy of Sensefly from Parrot Group®. Sentinel-2 image downloaded from Wikimedia Commons.

5. Discussion

Our work has demonstrated the applicability of multispectral mapping by UAVs in retrieving
interesting remote sensing (RS) indicators relevant to assess ecological integrity (EI) in wetlands.
Although a detailed set of EI indicators have been proposed to be used in LTER sites, here we suggest a
set of practical remote sensing indicators and variables that can be used to evaluate wetlands condition
by means of UAVs. The two studied wetlands are subject to similar drivers and pressures leading
to changes in inundation level, hydroperiod or water quality [82]. Linked to these variables, percent
plant cover of aquatic plants or floodplain trees is also a good EI indicator informing on both biotic
diversity and within habitat diversity. In our case, the rapid assessment of inundation, water turbidity,
percent plant cover and percentage of open water was very useful for managers in decision making in
relation to Azolla filiculoides distribution which needs to be periodically assessed [29,83].

Aside from the good performance of UAV mapping, the study also demonstrates the rapid
operation provided by this type of integrated solutions such as SenseFly eBee equipped with Parrot
Sequoia multispectral camera. Mission planning can be designed just the same day of the flight and
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modified according to weather conditions, specifically wind direction and speed. The only constraint
being the necessity of open and clear areas for landing which became evident while flying in the
Small Island of Braila. Its low weight and manageability make of it very easy equipment to be
transported even from one country to another. In addition, geometric correction can be satisfactory
in the cases where no ground control points can be set, such as wetlands. The use of ground control
points representative of large homogeneous areas reduces the effect of geometric error on thematic
accuracy [67].

Through the many empirical modeling we found significant linear relationships between Sequoia
spectral bands and indices and several RS wetlands indicators. The most informative band was band
4 in the NIR region. In general, Red and Green Sequoia bands were not informative for any of the
analyses what might be linked to the saturation issues found for these bands by González-Piqueras et
al. [84]. NIR was successfully related to percent open water and water depth while the spectral index
NDRE was highly correlated with percentage of aquatic emergent plant cover, as reported in few other
studies [85,86] but very weakly with water depth. Aquatic emergent plant height did only show low
significant fits with the green band and not with the vegetation height model (VHM). Although VHM
has been shown to work for crops [76], further investigation is required to enhance the application on
aquatic vegetation. Aquatic emergent plants can be found with different plant densities and percent
cover what might affect plant height retrieval from image matching [77]. Water turbidity was also
significantly modeled through a linear relationship with the spectral index NDWI as already suggested
by McFeeters [47] when it was proposed. However, only accurate results were found while applied on
inundated areas with percentage open water higher than 50%. We used these models to generate the
mapping for the remote sensing wetland indicators over the whole overflown areas (Figure 6).

Few aquatic plant species showed high spectral separability mainly using Red Edge and NIR
bands [56]. The spectral signature of floating macrophytes was clearly separable from helophytes and
grasses. However, the mapping of Azolla filiculoides, the alien invasive species in the understorey of
bulrush was not noticeable for Sequoia bands. Previous studies have shown the difficulty of mapping
aquatic ferns under a canopy of bulrush but the capability of identifying them while floating on
open waters [15,29]. Although our research shows a high spectral separability between emergent and
floating species, further investigation has to be done in examining the relationship of these practical
RS wetlands indicators with the Essential Biodiversity Variables and Ecosystem Services [87].

Another relevant role played by UAV multispectral mapping evidenced in our work is the
feasibility of enlarging the set of ground-truth data in such inaccessible or remote areas. By overflying
areas where few ground points are sampled, based on spectral relationships as shown here, we can
easily expand the ground-truth area to the whole flown area. Thus, we may easily increase sampling
size for empirical modeling with satellite remote sensing imagery. In this study, we used the
segmentation of multispectral orthomosaic from the UAV flight to enlarge ground-truth from the
sampling points to the segments containing them. We only applied this upscaling for inundation
mapping with Sentinel-2 images according to management request, although other RS wetland
indicators might be upscaled too. The procedure allowed to accurately mapping inundation occurrence
in Doñana marshes. While many upscaling studies have been carried out for crops [12,88] only few
have been tested for natural vegetation [14,89,90] and none for aquatic vegetation. A different approach
might be applied as well by directly using pixel values from the mapped wetland EI indicators as
ground-truth data for the S2 scene. However, an estimation of the propagation error would be
desirable for such an option as well as and assessment of the optimal resampling method from Sequoia
to S2 pixels.

While scaling up ground-truth information, attention should be paid in the choice of the
atmospheric correction model to be applied on satellite images. For instance, here we selected
QGIS-SAC model based on DOS which may result in reflectance bias in comparison to other methods
such as physical modeling or pseudo-invariant areas [91]. Here we found a close band-to-band
relationship between Sequoia and S2 reflectances, but still a 40% unexplained variance that might be
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due to such biases or to the differences in spectral resolution [92]. These findings have necessarily to be
refined by using handheld spectroradiometers in coincidence with the flight campaigns and satellite
image acquisition.

We also want to emphasize the possibility to add temporal dimension to this kind of rapid
assessments. Any mission might be repeated with the same planning during the inundation period or
after sudden changes. These frequent missions will clearly enhance the data to model other relevant
RS wetlands indicators such as hydroperiod [67]. In addition, recovery processes after disturbances
can also be evidenced using a time series of UAV multispectral images [93,94].

6. Conclusions

In this paper, we confirmed the valuable and fast applicability of multispectral images captured
by UAVs over two LTSER wetland sites in providing detailed mapping of inundation levels, water
turbidity, and depth as well as aquatic plant cover. The resulting maps can play as detailed inputs to
assess habitat diversity, wetlands dynamics, and ecosystem productivity and updated as frequently
requested by managers or scientists. UAVs can easily reach remote areas with short-time flights
resulting in an enlargement of the surveyed area (while allowed by local authorities). This advantage
can definitely contribute to increase the area for ground-truth purposes when used for upscaling
to satellite images. We tested the coherence between Sentinel-2 MSI bands and Parrot Sequoia
showing the close multispectral relationship what makes possible the transference of UAV-scale
to satellite-scale models.
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Abstract: Recent studies have demonstrated the high potential of drones as tools to facilitate
wildlife radio-tracking in rugged, difficult-to-access terrain. Without estimates of accuracy, however,
data obtained from receivers attached to drones will be of limited use. We estimated transmitter
location errors from a drone-borne VHF (very high frequency) receiver in a hilly and dense boreal
forest in southern Québec, Canada. Transmitters and the drone-borne receiver were part of the Motus
radio-tracking system, a collaborative network designed to study animal movements at local to
continental scales. We placed five transmitters at fixed locations, 1–2 m above ground, and flew a
quadrotor drone over them along linear segments, at distances to transmitters ranging from 20 m
to 534 m. Signal strength was highest with transmitters with antennae pointing upwards, and
lowest with transmitters with horizontal antennae. Based on drone positions with maximum signal
strength, mean location error was 134 m (range 44–278 m, n = 17). Estimating peak signal strength
against drone GPS coordinates with quadratic, least-squares regressions led to lower location error
(mean = 94 m, range 15–275 m, n = 10) but with frequent loss of data due to statistical estimation
problems. We conclude that accuracy in this system was insufficient for high-precision purposes such
as finding nests. However, in the absence of a dense array of fixed receivers, the use of drone-borne
Motus receivers may be a cost-effective way to augment the quantity and quality of data, relative to
deploying personnel in difficult-to-access terrain.

Keywords: radio-tracking; Motus; drone; boreal forest; precision; accuracy; response surface;
forêt Montmorency

1. Introduction

For several decades, radio-tracking has proven itself as a valuable tool for the investigation of
animal movements at a wide range of temporal and spatial scales [1]. The advent of the Global
Positioning System (GPS) and similar satellite-based systems has revolutionized wildlife tracking by
transmitting precise coordinates directly from tagged animals. However, GPS transmitters remain
costly and too heavy for small animals. As a result, conventional, non-GPS, transmitters remain the
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predominantly used tracking technology in studies of small songbirds and many other terrestrial
applications. With the exception of light-sensitive geolocators, which require recaptures to retrieve
data stored in memory [2], the location of non-GPS transmitters usually has to be inferred from signal
detection, signal strength, compass direction or combinations of those.

To get precise estimates of the location of animals fitted with non-GPS transmitters, field biologists
will often resort to triangulation or homing, i.e., getting progressively closer to the focal animal [3].
In rugged, difficult-to-access terrain, the latter two approaches are labor-intensive and may be well
outside research budgets, not to mention ever-increasing concerns about safety [4]. For species ranging
over kilometers or more, the use of conventional aircraft such as Cessna planes is often the only way to
obtain sufficient amounts of data, but such campaigns also pose a safety risk, with aviation accidents
determined to be the leading cause of mortality among wildlife workers in the United States from
1937–2000 [5].

The advent of drones in the civil sector may offer immense potential for combining affordability,
safety, and accuracy in the effort to document movements of animals fitted with non-GPS transmitters.
Chabot and Bird [6] provide a review of recent advances in the use of drones for wildlife applications.
They point out that despite its potential, drone-borne wildlife radio-tracking remains underdeveloped,
possibly due to enduring skepticism about its potential and/or technological and operational barriers.
To this day, the published literature suggests that, with few exceptions, the subject continues to be
largely approached as an engineering curiosity more so than an endeavor by those who stand to benefit
from its development: wildlife researchers and managers [7–10].

One of the concerns that needs to be addressed to promote the effective use of drones in wildlife
radio-tracking is accuracy. Signal power density is proportional to the inverse square of the distance
between the transmitter and the receiver. In principle thus, knowing the strength and direction of
a transmitter signal from two locations, sufficiently distinct in space and sufficiently close in time,
should yield highly accurate positions. However, transmitter signals are dampened by trees, rocks,
etc., to varying extents, and may exhibit multi-path effects, making it practically impossible to infer
transmitter locations from two locations with intervening obstacles.

We estimated transmitter location errors with fixed-location ”test” transmitters and a drone-borne
receiver in a hilly and dense forest composed mostly of balsam fir (Abies balsamea). We used a simple
quadratic, two-dimensional response surface of signal strength against Latitude and Longitude.

2. Materials and Methods

We conducted this study in September 2016 at Forêt Montmorency (47.4 N, 71.1 W), a teaching
and research forest located north of Québec City, Québec, Canada. The study area is a dense balsam
fir/white birch (Betula papyrifera) boreal forest landscape with altitudes ranging from 750 to 1000 m,
covered by a dense network of forestry roads (for details see [11]). We conducted seven flights,
within two sectors each covering ~0.2 km2, each composed of a matrix of old, mid-successional, and
early-successional balsam fir stands resulting from clearcutting (Figure 1). Tree height in the study site
varied from ~4 m to 12 m, with ~2500–10,000 stems/ha.

Each flight was performed by a custom-built heavy-lift quadrotor drone based on a Gryphon
Dynamics airframe (Daegu, South Korea) and a Pixhawk flight controller (3D Robotics, Berkeley, CA,
USA), with a payload capacity of about 4 kg including the battery. The drone was programmed to
fly at a fixed altitude of 50 m above the ground at the location where it was launched and a forward
speed of 5 m/s. We automated flights from takeoff to landing, and monitored them from the ground
using a tablet computer. We mounted a radio receiver system on the ground-facing side of the drone.
The radio receiver system was composed of a hanging omnidirectional dipole antenna attached to
a weight at the bottom end, and coupled to a Funcube Pro+ dongle. The dongle was connected to
a BeagleBone computer programmed to monitor and record signals simultaneously from multiple
transmitters (for details see [12]).
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Before each flight, we deployed five radio-transmitters at distances ranging from 18 m to 507 m
from one another (Figure 1). We placed each transmitter in a tree at ca. 1.3 m above ground, with the
antenna pointing up, down or horizontal. Transmitters were avian nanotags model NTQB-4-2,
Lotek Wireless Inc., Newmarket, ON, Canada). Each nanotag had a unique set of pulses delivered each
5 s at a frequency of 166.38 MHz (VHF; very high frequency), a standard used by the Motus Wildlife
Tracking System [12,13].

Figure 1. Flight transects and test transmitter locations, in yellow. Takeoff times are indicated.

After the completion of each flight, we downloaded data from two sources: the telemetry receiver
and the drone navigation log. Timestamps from the two sources were synchronized, allowing us to
match each signal reception from test transmitters to the exact location of the drone and in turn,
the distance between the transmitters and the receiver.

As pointed out earlier, several factors may influence signal reception and strength. However,
on average, signal strength should provide an unbiased estimate of the distance between the transmitter
and the receiver. Thus, a two-dimensional array, i.e., a map of signal strengths, should inform us
about the true location of the transmitter. We estimated the location errors with two methods. First,
we retained the drone location at which the signal was strongest, and calculated the Euclidean distance
between the drone XY coordinates, and the XY coordinates of the source. Second, we modelled signal
strength as a function of the drone’s XY coordinates in meters from a Modified Transverse Mercator
map projection (Easting and Northing) using two quadratic functions:

Easting: Dbm ~ β0 + β1(Easting) + β2(Easting2) + ε (1)

Northing: Dbm ~ β0 + β1(Northing) + β2(Northing2) + ε (2)

where Dbm is the signal’s strength, βi regression estimates, and ε a vector of model residuals.
The formulas yielded a peak signal strength when the regression estimate for the quadratic term was
negative. Note that in the presence of a peak signal strength both on X and Y coordinates, only relative
signal strength will be required to estimate transmitter locations. Differences in signal strength among

130



Drones 2018, 2, 44

transmitters, whether because of manufacturing or placement in the forest, are measured by the models’
intercept (β0). We obtained Easting and Northing estimates by:

Ê, N̂ =
−β1

2·β2
(3)

We conducted all analyses with the statistical software R version 3.5.0 [14].

3. Results

We obtained 669 detections of the test transmitters from the combined drone flights. Signal strength
decreased significantly with increasing distance to drone, with the furthest detection at 534 m (Figure 2,
F1,646 = 181.7, p < 0.001). The orientation of the transmitter’s antenna also had a significant effect on
signal strength (F2,646 = 62.6, p < 0.001), with antennae pointing upward performing best.

Figure 2. Signal strength in response to the distance between the drone and the transmitter.

Given that we conducted seven flights, each with five test transmitters deployed, we obtained
35 detection sets. Five to 42 detections were obtained for each detection set (mean = 19.9).
Based solely on drone locations when signal strength was greatest, mean location error was 132.3 m
(range: 28.8–294.2 m, n = 35). The reliability of the maximum strength method is questionable when the
strongest signal is on the periphery of the drone route, because in those cases the transmitter was likely
outside of the range covered by the drone. To prevent this, we removed all detection sets where the
strongest signal came from a drone location on the periphery of the convex hull enclosing the detection
set. The resulting subset of data yielded a mean location error of 134.0 m (range: 43.9–278.0 m, n = 17).

Nearest distances to transmitters yielded strongest signals in only two of the 35 detection sets.
Furthermore, signal strength did not always increase nearer transmitters (Figure 3), leading to only
seven cases where quadratic regression coefficients of signal strength against X or Y coordinates were
negative, i.e., leading to a maximum estimated signal strength as required for position estimation.

Of the seven cases with estimable positions, we dropped one case with an estimate error (3034 m)
greater than the maximum known distance between the drone and the transmitter (534 m). Figure 4
illustrates the remaining six cases where quadratic curve-fitting yielded estimable positions.

The mean location error from the quadratic method was 69.9 m (range 20.8–161.3 m).
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Figure 3. Left: best case scenario, with signal strength, depicted by cross size, roughly increasing
toward the location of the test transmitter (blue dot). Right, worst case scenario, with signal strength
showing no obvious relationship with distance to transmitter.

 

Figure 4. Transmitter location errors from quadratic regression estimation, based on signal strength.
Test transmitter locations in yellow, estimated locations in red.
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4. Discussion

The main outcome of this study was that drones offer an alternative to the more labor-intensive,
traditional approaches for radio-tracking small birds, amphibians, or small mammals in rugged terrain.
All five transmitters were detected on each of the seven flights, thus for the purposes of simple detection
at a range of a few hundred meters, a drone appears highly effective. However, the precision of the
detection-by-drone method is likely insufficient for finer-scale applications such as finding nests or
dens or documenting microhabitat use. We explored two ways to estimate source locations, based on
observed vs. modeled maximum signal strength. Observed maximum signal strength has the benefit of
being simple and easily obtainable (larger sample), but it wastes the bulk of the information obtained
by the drone. Furthermore, it is overly sensitive to outliers. The estimation method based on quadratic
estimation has the advantage of combining a comprehensive use of the data with computational
simplicity. In the present study, the quadratic method yielded disappointing results. However,
we believe that this method should be assessed more thoroughly with denser flight paths, and a less
variable elevation of the drone above ground, than in the present study. Additionally, field trials
should be conducted over open areas such as fields to evaluate the statistical noise, and possible bias,
caused by dense canopy. Our results were possibly influenced by the proximity of test transmitters to
road edges, so future field trials could be more reliable if transmitters were placed at more varying
distances from roads.

Given the aims of this study, it was natural to design the drone search pattern so that it would
fly directly over the transmitters. Of course, in real searches for animals wearing transmitters, search
patterns would result from a tradeoff between high density, e.g., the mean distance between flight
segments, and extent. Maximum detection distance should set a lower limit to search pattern density.
We found that signal strength decreased approximately linearly with increasing distance between the
source and the drone. Given that we were able to detect few signals at distances further than 500 m,
we believe that drones should always fly within 500 m of locations where animals wearing tags are
expected, or test transmitters were placed, in the case of calibration studies such as the present one.

Even in cases where drones would be flown in a dense search pattern over large extents,
locating tags carried by animals in motion will be more challenging than locating stationary tags.
The proximity of an animal body is known to amplify signals [15], but fortunately this effect should not
influence location estimation, which is based on relative signal strength from one drone location to
another. Animals moving fast on the horizontal plane, e.g., birds in flight, would undoubtedly pose
the greatest challenge. However, even animals remaining in fixed locations may prove more difficult to
locate than fixed tags, if they move (e.g., foraging), because signal strength depends on tag angle
relative to the drone, as we found here.

Over the past several years, there has been a dramatic increase in the use of drones to survey
and monitor birds by means of optical imaging, including breeding colonies [16–18], wintering
and migrating waterbirds [19–21], and individual nest inspections [22–24]. Rapid uptake of these
applications has been made possible by the relative maturity, simplicity and accessibility of the requisite
technologies, namely sophisticated and user-friendly drone flight control systems combined with
compact and very high-resolution digital cameras. However, the applicability of these approaches
remains limited to relatively large and/or unconcealed birds, whereas a considerable proportion of
species under study or management are small and challenging to locate or directly observe [25]. Thus,
it is of continuing interest to develop drone-based solutions to monitor and track birds using alternative
sensing methods that do not rely on direct visual observation of subjects, including acoustic sensors [26]
and radio telemetry. Such developments would help in addressing more elaborate questions, such as
habitat selection. This also extends to non-avian species: Chabot and Bird [6] identified a range of
wildlife taxa whose study and monitoring could potentially benefit from drone-based radio-tracking,
such as small- to medium-sized mammals including primates, mustelids, rodents and bats, as well as
lizards, snakes, land turtles and amphibians.
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We believe that the lack of breakthrough in drone-based radio-tracking in the last decade results
in part from a focus on more appealing, but more challenging, solutions. One of those is based on
an “active” localization system whereby multiple antennas mounted on a drone would enable
real-time, onboard triangulation of an animal’s location, which in turn automatically adjusts the
drone’s heading to fly towards the animal and pinpoint its position [6]. Indeed, the complexities
involved in bringing this idea to fruition have proven exacting, and the best working prototypes to
date still require a human operator at the drone’s ground control station to manually determine and
transmit flight path adjustments based on real-time feedback from the onboard antenna-triangulation
system [7]. In contrast, the approach detailed in our study and explored by few others [27] consists of
a “passive” localization system whereby the drone executes a preprogrammed flight path over an
area potentially containing one or more radio-tagged animals. The varying signal strength of a given
transmitter received by a single antenna on the drone at multiple locations along its flight path is
analyzed post hoc to estimate the animal’s location. Although not as compelling a solution as active
localization, this passive approach can be much more readily implemented using existing technology
(i.e., a drone capable of autonomous waypoint navigation and a simple antenna–receiver–logger
system) without needing to develop and integrate sophisticated new gadgetry.

Continuing technological and operational advancements of drones are likely to improve their
effectiveness for wildlife radio-tracking going forward. Already, “terrain following” capabilities have
now been integrated into most popular drone flight control systems, enabling the aircraft to maintain a
constant altitude above ground level in areas of varying relief, and consequently better normalization
of the strength of radio signals received from the ground. The flight range of drones is also currently
limited both by battery capacity and, often more significantly, airspace regulations that predominantly
restrict drone operation to within visual line of sight of operators on the ground [28,29]. This restriction
tends to be especially crippling in forests, where tall and dense trees, and hilly topography surrounding
ground operators cause them to quickly lose sight of the drone as it flies away. It is therefore promising
that regulatory agencies in several countries have recently undertaken more serious considerations of
allowing drone operations beyond visual line of sight (BVLOS) under certain conditions, and even
begun granting BVLOS approvals in limited cases. Regarding flight endurance, fixed-wing drones can
typically remain airborne significantly longer (upwards of an hour) than rotary-wing drones (typically
<30 min), but the takeoff and landing space requirements of the former tend to prohibit their use in
areas such as forests, whereas the latter feature more versatile vertical takeoff and landing (VTOL).
However, a growing number of hybrid VTOL fixed-wing drones have recently begun to enter the
commercial market.

5. Conclusions

Despite the limited number and extent of drone flights in this study, we were able to obtain
detection sets with enough detail to provide an operational assessment of transmitter location errors.
We conclude that accuracy in this system was insufficient for high-precision purposes such as finding
nests. However, in the absence of a dense array of telemetry towers, the use of drone-borne receivers
may be a cost-effective way to enhance the quantity and quality of data, relative to deploying personnel
in difficult-to-access terrain.
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Abstract: Waterbird communities are potential indicators of ecological changes in threatened wetland
ecosystems and consequently, a potential object of ecological monitoring programs. Waterbirds often
breed in largely inaccessible colonies in flooded habitats, so unmanned aerial vehicle (UAV) surveys
provide a robust method for estimating their breeding population size. Counts of breeding pairs
might be carried out by manual and automated detection routines. In this study we surveyed the
main breeding colony of Glossy ibis (Plegadis falcinellus) at the Doñana National Park. We obtained
a high resolution image, in which the number and location of nests were determined manually
through visual interpretation by an expert. We also suggest a standardized methodology for nest
counts that would be repeatable across time for long-term monitoring censuses, through a supervised
classification based primarily on the spectral properties of the image and a subsequent automatic
size and form based count. Although manual and automatic count were largely similar in the total
number of nests, accuracy between both methodologies was only 46.37%, with higher variability in
shallow areas free of emergent vegetation than in areas dominated by tall macrophytes. We discuss
the potential challenges for automatic counts in highly complex images.

Keywords: UAV; aerial survey; long-term monitoring; Plegadis falcinellus; bird censuses; supervised
classification; image processing

1. Introduction

Ecological monitoring programs are fundamentally important for maintaining long-term series
of data to evaluate the impact of anthropogenic activities and global change on protected areas [1–3].
Most conservation policies and management decisions rely primarily on information from monitoring
programmes that focus on the ecosystem structures and processes and biodiversity variables as species
populations [4–6]. One of the main goals of population monitoring programs is the study of species
distribution changes over time. In this regard, it is crucial to develop consistent methods to monitor
species distribution and abundance that will allow us to assess measures of population fluctuations [7].

Birds can be excellent barometers of environmental health [8], particularly in threatened habitats
as wetlands, where both species trophic resources and breeding conditions largely depend on ecological
and hydrological conditions. Accordingly, waterbird communities are extremely sensitive to changes
in the availability of suitable wetland habitats, becoming indicator species to promote conservation
awareness and actions [9]. However, as most species of waterbirds breed in largely inaccessible colonies
within flooded habitats, it is difficult to carry out surveys of colonial wetland birds in situ. Many of
these bird species breed densely aggregated in inaccessible places with no possibility of performing
ground surveys without causing serious disturbances to the breeding individuals [10]. Furthermore,
the breeding places often contain several species breeding in sympatry. Consequently, aerial surveys
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have become one of the most common methods for censusing colonies of waterbirds [11–14]. One of
the main constraints of this methodology is the limited spatial resolution resulting from aircrafts flights,
often not suited to local-scale ecological investigations [15]. Therefore, the application of UAVs has
been a qualitative leap in bird monitoring, enabling rapid, low disturbance surveys of inaccessible
areas while delivering repeatable images with a fine spatial resolution [16–19].

Despite the fine spatial resolution data that UAVs can deliver, there is some bias inherent in
this methodology that could hamper the extraction of accurate population data of densely colonial
aggregations of birds: the absence of ground-truth data in inaccessible habitats, the difficulty of
isolating and quantifying individuals or nests because of their cryptic nature or poor visibility through
the canopy [11] and the potential negative interactions between bird and drones [20,21]. Furthermore,
the quality of sensors is rapidly increasing, resulting in progressively very large images which are
difficult to treat with standard image processing software. Based on historical aerial surveys of
waterbirds, counting error has proved to be one of the most serious problems for aerial surveys [14].
Individuals or nest counts have primarily relied on manual interpretation of the images produced.
This can be time-consuming if imagery is collected over large areas and dense congregations of
birds [22]. Thus, the use of both manual and automated detection routines for features counting and
the development of automatic tools to detect large numbers of birds automatically from images has
become a necessary subject matter for current research [21–23].

This study was developed on Doñana National Park (SW Spain), one of the largest protected
wetlands in Europe with a typical Mediterranean climate. Doñana holds a large extent of temporary
marshes (340 km2). Wetland flooding patterns fluctuate interannual and seasonally, with natural
climatic variability or anthropic modifications, modifying substantially the suitable area for breeding
species [24]. Doñana is also recognized as a Long-Term Socio-Ecological Research (LTSER) platform
integrated in the LTER-Europe network [25] by applying harmonized protocols for long-term
socio-ecological research. We particularly focus on observations of a colonial species, the Glossy ibis
Plegadis falcinellus, a species nesting in Doñana [26] where it has undergone an explosive population
expansion from seven pairs in 1996 to more than 10,000 pairs by 2017 [27–30]. Glossy ibis is considered
as least concern status by the International Union for the Conservation of Nature (IUCN) by its
extremely large distribution range [31], but is cited as a conservation concern in the Spanish Red
Data Book [32]. However, the species is threatened by wetland habitat degradation and loss [29,33],
so their surveillance has a high priority within the long-term monitoring programs of Doñana National
Park. Furthermore, the number of breeding pairs has increased dramatically in recent years in the
FAO colony, with a total population in Doñana wetlands exceeding 10,000 pairs in 2017 [30]. This,
combined with the fact that the species breeds in marshes, with nests positioned less than one meter
above water in tall dense stands of emergent vegetation [29], makes ground censuses totally out
of reach. The cryptic nature and dark colours of this species represent also a challenge for their
discrimination by way of aerial censuses.

The purpose of this study was to evaluate the capabilities of UAVs to perform aerial censuses
of densely populated wetland colonies of waterbirds, with the aim of integrating unmanned aerial
flights in the long-term monitoring bird populations censuses. Our particular objective was to estimate
the number of breeding pairs of Glossy ibis in the study area, comparing the capability of manual
and automatic count procedures based on image-analysis techniques that use the spectral, size and
form characteristics of the target species for an automatic recognition [14,23]. The final objective is to
evaluate whether UAV surveys can be integrated as an efficient and standardized tool for long-term
monitoring of colonial breeding waterbirds in Doñana National Park.
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2. Materials and Methods

2.1. Species and Study Area

The first breeding report for Glossy Ibis at Doñana wetlands dates back to 1770 [34], but the
species was pushed to extinction by hunting and the pillaging of the eggs during the early years of
the twentieth century. It was not until 1996 that the species became re-established and bred regularly
in Doñana. This natural area contained 90% of the Spanish breeding population of Glossy ibis in
2001 [29]. At present, “Lucio de la FAO” hosts the main Glossy ibis colony at Doñana National Park,
a large mixed colony where it breeds in association with other species, regularly Ardeidae (Figure 1a).

(a) (b) 

Figure 1. (a) Glossy ibis (Plegadis falcinellus) individual. (b) Front view of the Glossy ibis colony,
densely covered by the macrophyte Typha, which makes it extremely difficult the ground census of the
colony. Photos: Carlos Gutiérrez-Expósito (a), and Manuel Máñez (b).

The “Lucio de la FAO” is a system of three interconnected semi-artificial ponds covering a total
surface area of about 50 ha which is flooded by both direct precipitation and groundwater pumped from
the underlying aquifer. The vegetation cover varies with locally dense stands of Typha (mostly used
for nesting, Figure 1b), areas dominated by tall Tamarix scrub and shallow areas free of emergent
vegetation [26].

2.2. Drone Survey Method

One aerial survey was conducted over the main breeding colony of Glossy ibis in Doñana National
Park (37◦4′23”N, 6◦2′46”W, Figure 2a,b) on 14 May 2018 between 10:00 and 10:33 hours (local time).
The survey was done using a Phantom 4 Pro quadcopter (DJI Innovations, Shenzhen, China). This UAV
was equipped with a compact 4K digital camera of 20 megapixels (24 mm lens). The exposure time
was set automatically using “speed priority” mode. The Phantom UAV was remotely controlled with
a handheld unit keeping the legal maximum distance of 500 m from the operator.
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(a) 

(b) (c) 

Figure 2. Location of Doñana National Park, SW Spain (a,b). Red dots indicate the situation of the
Glossy ibis colony. (c) Automatic flight path covered by the UAV to collect image of the Glossy
ibis colony in “Lucio de la FAO”. The UAV followed 22 predefined transect lines (yellow lines,
6292.2 m) with 80% front overlap and 70% side overlap. Green stars show ground control points (GCPs)
established to increase the absolute global accuracy of drone image.

The UAV followed an automatic flight programmed beforehand with 22 transect lines covering
an area of 16.1 ha with 80% front overlap and 70% side overlap (see Figure 2c). The flight settings were
defined using Pix4DCapture mobile app (Pix4D SA). The drone was flown at an altitude of 50 m above
ground elevation and at a ground speed of 12 km h−1 (Figure 3a,b). A total of 448 images were taken.
The ground sample distance (GSD), being the distance between adjacent pixel centres on the ground
was 0.0132 m. Environmental conditions provide optimal flight conditions: high visibility (>1000 m),
no cloud cover and wind speeds <4 m s−1. The total duration of the census was ca. 1 h. No adverse
behaviours from birds against the UAV or disturbance reactions were observed.

Flight was operated during the late hatching period of the Glossy ibis, to assure that only one
individual from the breeding pair was lying on the nest, while the other fed in the nearby foraging
marshland areas. Both sexes of Glossy ibis individuals alternate to incubate the eggs and feed the
chicks [35], and the exchange takes place early in, and at the end of the day, with no interference during
the flight time.

The pictures were mosaicked with the Pix4Dmapper photogrammetric software (Pix4D SA,
Switzerland) to obtain a single multiband RGB image of the colony. The Pix4D computing consists
of three steps: initial processing, point cloud densification and DSM and orthomosaic generation,
which are carried out automatically [36]. The final spatial resolution of the orthomosaic was 0.0132 m.
Only seven ground control points (GCPs) could be placed using conspicuous elements in the accessible
area (see in Figure 2 the paths surrounding the main building) providing a mean RMS (root mean
square error) of 0.06 m.
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Figure 3. (a) Drone used to survey the Glossy ibis colony, Phantom 4 Pro quadcopter. (b) Phantom 4
surveying the colony at 50 m of altitude. Birds show no disturbance. Photos: Manuel Máñez.

2.3. Visual Identification of Breeding Birds

Confronted with an inability to collect ground-truth data for several of the nesting birds in the
colony, we performed a manual and visual identification of the breeding birds in the orthomosaic.
An experienced ornithologist identified birds sitting on nests ‘by eye’. A point vector file with nest
positions was created while onscreen digitizing at 1:30 scale. Other sympatric breeding species,
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whenever visible, were also geolocated in the image. Visual identification was performed in ArcGIS
10.5 (ESRI, Redlands, California, U.S.A.).

2.4. Automatic Identification of Breeding Birds

The automatic detection of breeding individuals was accomplished in two steps: first we
performed a supervised classification based primarily on the spectral properties of the image with the
aim of simplifying the original complexity of the entire scene and enhancing the subsequent automatic
detection of Glossy ibis individuals. In a second stage, we carried out an automatic count using image
processing software where size and form were introduced to the recognition process.

2.4.1. Supervised Classification

A supervised classification segments the spectral domain of an image and assigns every pixel
a probability of belonging to one of the classes of interest, based on the spectral information of
homogeneous training areas for the different thematic classes being considered [37]. We used a
Random Forest supervised classification to classify the original image into three classes. The Random
Forest classifier consists of a combination of decision trees from randomly selected subset of a training
set. The trees are created by drawing a subset of training samples through replacement: two-thirds
of the data are sampled for training and the remaining third of the data are excluded for validation.
The final classification decision is taken by averaging the class assignment probabilities calculated by
all produced trees. A new unlabelled data input is thus evaluated against all decision trees created
in the ensemble and each tree votes for a class membership. Pixels are classified by taking the most
popular voted class from all the tree predictors in the forest [38,39]. Random Forests are widely
popular because of their ability to classify large amounts of data with high accuracy and preventing
overfitting [39]. We used breeding birds sitting on their nests from the orthomosaic as training areas
for the class “ibis”. Nest structures, typically completely covered by guano, represent the second class.
The third class evaluated comprised areas covered by a homogenous film of Lemna. The remaining
more complex vegetation and other species (i.e., Purple heron) were not considered because those
classes shares spectral properties with the Glossy ibis and their inclusion considerably reduced the
accuracy of classification. A total of 33,977 pixels were selected for the training features, with a similar
number of pixels for the three classes (class balanced). A total of 100 trees were used. The resulting
image was reclassified to maintain only the category “ibis”.

All analyses were conducted in R [40]. The packages rgdal [41], raster [42], caret [43],
and randomForest [44] were also used.

2.4.2. Image Processing

Image analyses were performed with the freely available Fiji distribution of ImageJ software
(developed at the US National Institutes of Health) [45,46] and the “Analyse Particles” function
which counts objects in binary or thresholded images. Supervised classification and subsequent
reclassification through a binary image was used as input for the image analysis. This step avoids the
need to select a threshold value which will prevent objects above a certain pixel value being included
in the automatic count total.

One hundred Glossy ibis individuals randomly distributed in the study area were digitalized with
a 600× zoom. Size and form (circularity) measures were extracted to determine the upper and lower
threshold limiting size and form-based selection of particles to be counted. The resulting grid classified
image showing the detected particles was vectorized in ArcGIS 10.2 (ESRI, Redlands, California,
U.S.A.)., applying first a low pass filter and a majority filter to soften the limits of the areas classified
as ibis individuals. Micropolygons with a surface area of less than 0.007 m2, which had split from
complex shaped polygons during the vectorization process, were removed.
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2.5. Validation

To test whether the automatic method was reliable, accuracy (proportion of nests mapped
correctly), commission errors (proportion of nests counted automatically but left out in the manual
process) and omission errors (proportion of nests omitted in the automatic procedure) were determined
by spatial comparison of georeferenced nests obtained from the automatic process to those visually
determined over the image by an expert. Validation was performed on the total colony and on six
square sample plots of 329 m2, selected over the main vegetation types where nests were settled,
as derived from visual inspection of the orthomosaic obtained: three sample plots in the flooded areas
densely covered by macrophytes (mainly Typha, number of nests ranged 94–228) and three in the free
areas of emergent vegetation but covered with a layer of aquatic plants (Lemna spp, number of nests
ranged 126–161).

Spatial overlap was conducted between the individuals obtained from the vectorization of
the automatic classified image and a buffer area of 0.15 m of radius around the nests detected
manually. A visual inspection was also performed to assure that all identified nests were inside
their corresponding overlap area.

Validation plots were also used for estimating Glossy ibis nest density and nest distance in each
vegetation class from the manual georeferenced nests.

3. Results

The orthomosaic obtained from the aerial survey showed an area of 16 ha covering the complete
surface of the Lucio de la FAO where Glossy ibis breeds (Figure 4). The Glossy ibis colony was based
in a continuous area of 3.2 ha with two major classes of vegetation cover: flooded areas covered by
macrophytes (mainly Typha) and free areas of emergent vegetation but covered with aquatic plants
(Lemna spp). Regardless the vegetation type cover around the nests, Typha invariably constitute the
predominant nesting material (Figure 4a). No nests were found over Tamarix shrubs.

100 m

´

1 m

1 m

(a)

(b)

(a)

(b)

Figure 4. Orthomosaic image of high-resolution of the Glossy ibis colony in “Lucio de la FAO”.
Image was mosaicked with Pix4D mapper Pro (Pix4D, Switzerland) after acquiring 448 photos through
automatic flight of Phantom 4 Pro quadcopter (DJI Innovations, Shenzhen, China) on 14 May 2018.
Squares show validation areas to test the accuracy of the automatic nest counting method to the visually
nest count by an expert. Blue squares show densely macrophytes area (Typha spp) whereas red squares
showfree areas of emergent vegetation covered by Lemna aquatic plant. White line delineates the Glossy
ibis nesting area.
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3.1. Manual Counting

Visual identification of lying birds on nest identified a total of 7134 individuals of Glossy ibis
together with 439 individuals of Purple heron (Ardea purpurea). Glossy ibis nests measured 0.57 ± 0.1 m
(mean ± SD) in diameter (n = 50), similar to those of Purple heron (0.70 ± 0.24, n = 50). Glossy ibis nests
were densely distributed throughout the colony (0.22 nests m−2), with similar density in areas covered
by different vegetation classes, as Typha or Lemna areas (0.4 nests m−2, Table 1). Minimum proximity
distance within nests was lower than 0.5 m in all areas, with maximum proximity distances up to 7 m
(Table 1). Purple heron nests were not uniformly distributed into the Glossy ibis breeding area, with a
preference for areas with greater vegetation cover of Typha.

Table 1. Glossy ibis nest density, minimum nest distances (mean ± SD and range) obtained from
manual georeferencing of nests, in the total colony and inside the three validation areas selected for
each vegetation class. The number of total Glossy ibis nests and range number of nests considered for
each vegetation class is also shown.

Area
Nest Density
(Nests m−2)

Nest Distance
(m)

Nest Distance
(Range, m)

Number of
Nests

Total colony 0.22 0.88 ± 0.48 0.26–7.84 7134
Typha spp. 0.41 ± 0.22 0.82 ± 0.36 0.32–3.85 94–228
Lemna spp. 0.43 ± 0.05 0.79 ± 0.42 0.33–3.35 128–161

3.2. Automatic Counting

The automatic bird count showed a total of 8,060 nesting birds, but was unable to distinguish
between the two species breeding in the colony (Figure 5). Total accuracy between nest counts manually
and nests counted by the automatic procedure was of 43.65%. Accuracy was similar in areas with
dense canopy covered by macrophytes (Typha) (50.37%, Table 2), than in open areas only covered by
Lemna (49.01%, Table 2). Nevertheless, variability between validation plots was much higher in Lemna
than in Typha areas (Table 2).

Table 2. Accuracy (total agrees with the percent of total nests detected), commission, and omission
errors obtained between manual count and automatic nest counting procedure, in the total colony and
in average and SD for the three validation plots selected for each vegetation classes. The number of
total Glossy ibis nests and range of nests enclosed in the three validation areas considered for each
vegetation class is also shown.

Area Accuracy (%) Commission Error (%) Omission Error (%) Number of Nests

Total colony 46.37 66.61 53.63 7134
Typha spp. 50.37 ± 2.19 55.06 ± 27.79 49.63 ± 2.19 94–228
Lemna spp. 49.01 ± 19.22 22.64 ± 7.45 50.99 ± 19.22 128–161

144



Drones 2018, 2, 42

Figure 5. Automatic Glossy ibis nests count process. (a) Overview of the Glossy ibis nests from
the orthomosaic obtained by the UAV. (b) Result of the Random Forest supervised classification.
Pixels were classified into three classes: Glossy ibis (red), nest structures (yellow) and Lemna cover
(green). (c) Two-bits image, result of the reclassification of the supervised classified image to maintain
only ibis class. (d) Glossy ibis laying individuals automatically obtained by the image processing
software (ImageJ), size and form based. Dots show identified nests by visual inspection (black dots
indicate Glossy ibis nests and yellow dot indicates Purple heron nest).

4. Discussion

The survey conducted by means of UAV technology, allowed us to obtain a high-resolution
image of the main Glossy ibis colony in the Doñana National Park, settled in a flooded inaccessible
area. From this orthomosaic, we determined the nests established, their spatial location and the
presence of another species (Purple heron), albeit in a minority, breeding in sympatry with the Glossy
ibis. The spatial resolution accomplished by the flight allowed a good by-eye estimation of the
breeding population, since nest structures and Glossy ibis individuals were able to be identified in
the orthomosaic. Despite this, the automatic count was less accurate than the manual count, with the
automatic count consistently failing to detect the 50% of the birds in the image.

The census of Glossy ibis breeding in Lucio de la FAO was in fact a challenging task: this
colony hosts a high density of individuals, nests are constructed inside macrophytic vegetation up to
more than one meter in height, and the target species has a dark-coloured plumage, which makes it
difficult to stand out from the background. Indeed, aerial censuses of this species had produced very
poor outcomes, detecting only 17% of the nests in freshwater marshes [11]. Therefore, the accuracy
rates in waterbird colony manual counts have clearly improved with the use of UAVs technology,
allowing near 100% of nests recognition with image resolutions under 0.01 m, and ideally when
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reached 0.005 m [10]. Dulava et al. [47] recommended an image resolution of ~0.005 m/pixel to enable
correct species identification [48]. Object-oriented approaches also recommend very high resolution
images (0.01 m/pixel or finer) [23]. With a spatial resolution of 0.01319 m/pixel obtained in our trial,
performance shortcomings in automatic counts in this work can be likely attributed in part, to an
insufficient image resolution. Furthermore, the automatic count omitted those individuals not well
isolated from their background. Shaded vegetation and dark areas of water were assigned to the
same group as dark Glossy ibis individuals in the course of the supervised classification process,
causing commission errors during the counting process. On the other hand, white guano areas laid on
the nest material, which were easily recognized throughout the classification, allowed a good isolation
of breeding individuals. However, nests with a reduced white guano envelope were more likely
to be omitted during the automatic count process. The automatic count performed similar at nest
detection in canopied macrophytes areas (Typha spp) than in open waters covered by Lemna. However,
variability in detection was much higher in Lemna areas. Low detection may be related to patches of
dark water within the Lemna beds could be mistaken for the ‘Ibis class’ if they were within the size
limit determined for Glossy Ibis particles.

While an improvement of the spatial and radiometric resolution of the image may provide a
better outcome, we propose here a methodology that allows a standardized automatic nesting count,
easily implementable and repeatable across time for long-term monitoring censuses. Reducing the
complexity of images for extracting information usually relies on a thresholding step, which transforms
the original image into a binary one, in which a cut-off value determines the level above and below
which the pixels will be selected for being measured [49]. Consequently, this is one of the most critical
and at the same time subjective steps in the image processing. Thresholding has proved to be highly
effective in cases where target features are spatially separated and where they do not share the same
spectral range as other image elements in the background [50–52]. However, in situations without
high bird contrast, classifications can be considered as an alternative approach to isolate birds from
background features [52–54]. With regard to the complexity of the Glossy ibis colony image, we have
performed a supervised classification for simplifying the spectral classes of the original image and
reduce the file size. Both processes were needed to enhance the capabilities of image processing
software (ImageJ). In addition, size and shape filtering, particularly roundness, which has been proved
to be effective detecting several bird species [52,53] was subsequently used.

The results derived from this study demonstrate the capability of UAV censuses for detailed
monitoring of Glossy ibis (and, therefore, other waterbirds breeding in similar habitats), and their
applicability for obtaining long term comparable breeding population trends. For many waterbird
populations, aerial surveys are proving the only way to collect data over large areas at a relatively
low cost [14]. This case study reveals the benefits and limitations of the applicability of UAVs for
waterbirds monitoring: drones are capable of collecting high-resolution spatial data in difficult access
areas, with non-significant disturbance to the breeding birds, and with an affordable cost depending
on the surface to be covered [16]. In this particular case, the colony could be flown over in a short
time (one hour), which was helped by the proximity of access routes, which results in a suitable
compromise between cost and results obtained. The extraordinary growth in recent years of the
breeding population of this species means that any other methodology for obtaining breeding data
is unfeasible. The Glossy ibis colony needs a low altitude flightfor providing images of sufficiently
high resolution to accurately isolate individual nests in the image, but without causing disturbance
to the breeding birds and their chicks. Indeed, the resolution accomplished to date allows a manual
approach to counting nests, but is still unsatisfactory for an automatic estimate. As UAV capabilities
will increase, in terms of flight endurance and sensor resolution, a larger amount of high-resolution
data will be collected, and automatic processing will become a major need [55]. Adjusting automatic
procedures is essential to incorporate UAV data into long-term monitoring programs, since this will
reduce bias due to visual interpretation and provide comparable data over time.
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Abstract: As with other species of great apes, chimpanzee numbers have declined over the past
decades. Proper conservation of the remaining chimpanzees requires accurate and frequent data on
their distribution and density. In Tanzania, 75% of the chimpanzees live at low densities on land
outside national parks and little is known about their distribution, density, behavior or ecology. Given
the sheer scale of chimpanzee distribution across western Tanzania (>20,000 km2), we need new
methods that are time and cost efficient while providing precise and accurate data across broad spatial
scales. Scientists have recently demonstrated the usefulness of drones for detecting wildlife, including
apes. Whilst direct observation of chimpanzees is unlikely given their elusiveness, we investigated the
potential of drones to detect chimpanzee nests in the Issa valley, western Tanzania. Between 2015 and
2016, we tested and compared the capabilities of two fixed-wing drones. We surveyed twenty-two
plots (50 × 500 m) in gallery forests and miombo woodlands to compare nest observations from the
ground with those from the air. We performed mixed-effects logistic regression models to evaluate
the impact of image resolution, seasonality, vegetation type, nest height and color on nest detectability.
An average of 10% of the nests spotted from the ground were detected from the air. From the factors
tested, only image resolution significantly influenced nest detectability in drone-acquired images.
We discuss the potential, but also the limitations, of this technology for determining chimpanzee
distribution and density and to provide guidance for future investigations on the use of drones for
ape population surveys. Combining traditional and novel technological methods of surveying allows
more accurate collection of data on animal distribution and habitat connectivity that has important
implications for ape conservation in an increasingly anthropogenically-disturbed landscape.

Keywords: UAV; great apes; conservation; survey; Tanzania; image resolution

1. Introduction

As with other great ape species, chimpanzee numbers have declined over the past decades and
the species is currently threatened by extinction [1]. Several studies have documented the impact of
habitat loss [2–4], poaching [5–7] and infectious disease [8,9] on wild populations. In Tanzania, 75%
of wild chimpanzees are found within a 20,000 km2 area of national parks [10–15]. Monitoring these
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chimpanzees is therefore crucial for their conservation in Tanzania. For conservation management, it
is important to establish where and how many individuals remain and to understand the potential
connectivity between populations. These data represent key information that is used towards creating
baseline estimates for assessing the effectiveness of conservation efforts over time [16,17].

There are several established methods for studying and monitoring wild animal populations.
Line transect surveys are widely used to estimate population density for a variety of mammal species,
including great apes [18–21]. Data from direct observations of animals or indirect evidence such as
dung [10], nests [22,23] and calls [24] can be converted into density and subsequently population
estimates across larger landscapes [25]. Indirect evidence is especially important in great ape surveys
given the elusive nature of the species and their extensive range and distribution [26].

Traditional land-based transects are time-consuming and expensive, and for these reasons
geographically wide surveys are not repeated frequently [26]. Aerial surveys with light aircraft
can be effective across broad areas for counting large mammals [27,28], but have limitations. While
such surveys may provide an unbiased population size estimate for large mammals found in open
areas (e.g., elephants, buffalos, zebras), they are unlikely to provide accurate estimates for smaller
species (e.g., black-backed jackal, bushbuck, vervet monkey) [29] or those that live in habitats with
greater canopy cover. Furthermore, aircraft surveys are logistically difficult to implement due to their
very high cost and the risk they pose to operators (i.e., aircraft crashes) [30]. Due to their increasing
availability, high resolution satellite images have also been used to detect animals or their signs [31].
Although promising, this method is also unlikely to provide accurate estimates for small species and is
hampered by cost and atmospheric interference from clouds, especially problematic in the tropical
regions where great apes are distributed [32]. Camera-traps and acoustic sensors are other promising
remote technologies that enable broad spatiotemporal and precise information on animals that are
elusive and otherwise difficult to study [33,34]. Nevertheless, these methods have high initial costs and
still require intensive manual labor for deployment, memory card collection and substantial expertise
in subsequent data analyses.

Recently, scientists have started to deploy drones—remotely operated aircraft with autonomous
flight capabilities—for wildlife monitoring [35–37]. This application allows for rapid and frequent
monitoring across moderate to broad spatial extents while providing high-resolution spatial data.
Several studies have now reported successful animal detection using drone-derived aerial imagery,
ranging from birds [36,38] to large terrestrial [39,40] and marine [41–44] mammals. Recent studies
on using drones to detect indirect signs of animals have also reported promising results in detecting
orangutan [45] as well as chimpanzee [46] nests.

Given the extent of the area in need of monitoring, exploring drone applications for chimpanzee
population surveys in Tanzania may reduce cost and time investments. Visibility bias (i.e., failure
to detect all animals within a sampled area) is a primary source of error in aerial surveys [27,29,47].
Prior to the widespread deployment of drones for a census, it is important to first evaluate bias in
the method (i.e., calculate a correction factor) by comparing the resulting detections with traditional
ground survey results. Numerous factors can impact the detectability of a direct or indirect sign
of wildlife [25,48]. Thus, it is critical to determine what affects chimpanzee nest detectability in
drone-acquired images. In the current study, we assessed several factors known to affect target
detectability in aerial images: image resolution [39,49]; canopy cover and vegetation type [29,39,46,50];
and target size and color [29,42].

In summary, our objectives were to (1) evaluate drone performance for chimpanzee nest surveys
by comparing ground and aerial surveys; and (2) assess the factors that influence detectability from
drone data. Based on the results of previous studies, we hypothesized that using a higher resolution
camera as well as flying at a lower altitude would increase the nest detection probability. We also
expected a higher detection probability during the leaf-off season and in the more open miombo
woodland vegetation than the closed riverine forest. Finally, we predicted that nests higher in the
canopy and with a color that contrasts with their surroundings will be easier to detect.
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2. Materials and Methods

2.1. Study Site

The study was conducted in May 2015 and September 2016 (beginning and end of dry seasons,
respectively) in the Issa Valley, western Tanzania (Figures 1 and 2). The area is characterized by
a landscape mosaic, dominated by miombo woodland (named for the dominant tree genera of
Brachystegia and Julbernardia) interspersed with grasslands, swamps and gallery forest restricted
to steep ravines. Open vegetation (e.g., miombo woodland, grassland and swamps) represents more
than 90% of the 85 km2 study area (Piel et al., unpublished data; Figure 1). The region is one of
the driest, most open and seasonally extreme habitats in which chimpanzees live [51], with annual
temperatures ranging from 11 ◦C to 35 ◦C and a dry season (<100 mm of rainfall) lasting from May
to October.

Figure 1. Location and map of the Issa Valley showing the distribution of all plots. Vegetation class
layer produced by Caspian Johnson (unpublished).
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Figure 2. Partial orthomosaics of the study site representative of the vegetation at the beginning (May
2015) and at the end (September 2016) of the dry season.

2.2. Ground Surveys

To collect chimpanzee nest data from the ground for comparison with drone observations, we
created 22 plots, each 50 × 500 m, stratified equally across gallery forest and miombo woodland
(Figure 1). Within each plot, two experienced observers walked slowly and recorded the GPS location
of all observed chimpanzee nests. Only one inspection per plot was performed. During the 2015
survey, data were collected using the open data kit [52] on NEXUS 7 tablets with an average accuracy
of 15 m. In 2016, we used the global navigation satellite system (GNSS) Mobile Mapper 20 (MM20,
http://www.spectraprecision.com), allowing us to collect data with a <1 m accuracy. For each nest,
we collected additional data, including nest height from ground (estimated to the nearest meter),
vegetation type (open or closed) and the nest color (green or brown).

2.3. Aerial Surveys

For the aerial surveys, we used two drone models paired with two different cameras (Figure 3).

Figure 3. Types of drone/camera pairing deployed: (a) Pairing A; (b) Pairing B.

Pairing A: The ConservationDrones.org X5 (Skywalker X5 frame; hobbyking.com [similar to HBS
FX61]) equipped with a GPS-enabled Canon S100 camera (resolution: 4000 × 3000 pixels; sensor size:
7.6 × 5.7 mm) operating a CHDK firmware modification.

Pairing B: The more stable HBS Skywalker 100 km Long Range Fix Wings drone (Skywalker 2013
body 1880 mm; hobbyking.com) fitted with a Sony RX100M2 (resolution: 5472 × 3648 pixels; sensor
size: 13.2 × 8.8 mm). Both were equipped with an autopilot system based on the ‘ArduPilot Mega’
(APM), which includes a computer processor, GPS, data logger, pressure and temperature sensor,
airspeed sensor, triple-axis gyro, and accelerometer. Cameras were triggered automatically based on a
predefined flight plan to produce at least 60% front- and side-overlap among images. Missions were
planned using the open-source software APM Mission Planner (http://planner.ardupilot.com/) on a
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standard Windows-based laptop. Once we completed the missions, we geotagged the images from
the Sony camera using the same software. Geotagging was not necessary for the Canon images as the
camera was GPS-equipped.

The drones performed two types of missions: straight line transects and grid missions (Figure 4).

Figure 4. Types of mission flown: (a) Line transect; (b) Grid mission.

Line transects: Straight line missions covering the areas within the ground plots at an average
altitude of 90 m above ground level (AGL). We investigated aerial images obtained during these
missions for the presence of chimpanzee nests.

Grid missions: Grid pattern missions flown at an average altitude of 120 m above ground
level with extensive overlap (>60%) between flight legs to allow for the creation of orthomosaics.
We produced orthomosaics using the geotagged images in Pix4D mapper (https://pix4d.com,
version 4.0.25). Although ground control points (GCPs) were set up in each area for both years, the
GCPs from 2015 could not be localized in the aerial images. The resulting accuracy of the orthomosaics
was that of the Canon S100 camera GPS (average accuracy of 5 m). Improved GCPs were set up in 2016
allowing a georeferencing accuracy within a meter. We used the orthomosaics for the subsequent spatial
relocation of aerial observations made while interpreting the photos from the nest counting missions.

2.4. Nest Detection

One observer (NB) examined the 1227 images resulting from the transect missions falling within
the plots. Images were imported into the WiMUAS software [53] and investigated for the presence
of nests. The aerial observation location was subsequently exported to a georeferenced shapefile.
Because the resulting file was accurate to within 50 m, each aerial observation was relocated using the
orthomosaics. Due to the 15 m inaccuracy of the 2015 ground data, a buffer of 15 m was created around
each nest and if an aerial observation was recorded within this 15 m radius that was considered an
aerial nest detection.

2.5. Analyses

All statistical analyses were conducted in the R studio (version 1.0.136).

2.5.1. Performance of the Aerial Detection

We calculated recall and false alarm rates to estimate the performance of nest detection using
drone imagery [54]. Recall is the percentage of successful detection (i.e., the proportion of nests
observed from the ground detected during the aerial survey in relation to the total number of nests
observed from the ground). The false alarm rate is the proportion of false detections (the number
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of aerial observations not aligning with nests found from the ground by the total number aerial
observations). Because the data were not normally distributed, we used non-parametric statistics.
A Wilcoxon-signed rank test was applied to compare the number of nests per plot found on the ground
and on the aerial drone survey. We further ran a Spearman rank correlation to test for associations
between the number of nests per plot across the two survey methods.

2.5.2. Factors Influencing Detectability

We used three generalized linear models (GLM) with a binomial error structure and logit-link
function to evaluate which factors (drone/camera pairing, season, vegetation type, nest age, nest
height and flight altitude above ground level (AGL)) influenced the recall rate and the false alarm
rate. The models were fitted using the GLM function from the lme4 package [55]. We fitted all terms
of interest and tested significance via likelihood ratio tests to determine which factors resulted in a
significant reduction in explanatory power when removed [56].

Factors influencing the recall rate: For the first model, the recall rate was fitted following the
method from Lopez-Bao [57]. The number of nest detection successes vs. number of failures by plot
(modelled as 1 = success and 0 = failure) was fitted as the dependent variable. Drone/camera pairing
(Pairing A or Pairing B), season (May 2015 or September 2016) and vegetation type (open or closed)
were each fitted as two-level fixed effects. As it was not possible to test the influence of all variables in
this model (e.g., nest color and nest height required a perfect individual nest match between the ground
and aerial survey), we fitted a second model. This second model included only the data from the 2016
survey, for which aerial observations could be more accurately matched to individual nests found
on the ground. We fitted the nest detection event (not detected = 0, detected = 1) as the dependent
variable. Vegetation type (open vs. closed) and nest color (green or brown) were each fitted as the
two-level fixed effect and flight altitude AGL and nest height were fitted as covariates. We determined
flight altitude AGL by subtracting the elevation (extracted from a Shuttle Radar Topographic Mission
(SRTM) layer—30 m resolution; http://earthexplorer.usgs.gov) from the flight altitude above mean
sea level (extracted from the geotagged images) at each recorded nest location.

Factors influencing the false alarm rate: In the last model, the false detection event (true detection
= 0, false detection = 1) was fitted as dependent variable. Drone/camera pairing (Pairing A or Pairing
B), season (May 2015 or September 2016) and vegetation type (open or closed) were each fitted as
two-level fixed effects and flight altitude AGL was fitted as a covariate.

3. Results

3.1. Performance of the Aerial Detection

Considering both survey seasons (May 2015 and September 2016) and the results from both
drone/camera pairings (pairing A and pairing B), we documented 667 chimpanzee nests from the
ground (Supplementary Figure S1) and 112 from aerial observations (Figure 5; Supplementary Figure
S2). Of these aerial observations, 64 fell within the 15 m radius of a nest that had been spotted from the
ground and were considered to be nests, representing a 9.6% recall rate and 42.8% false alarm rate.
Although the image analysis resulted in significantly fewer nest records per plot compared to what the
ground teams documented (Wilcoxon- signed rank test: v = 981; p < 0.001; n = 47), the number of nests
detected from aerial survey imagery showed a significantly positive correlation with those recorded
on the ground per plot (Spearman’s ρ = 0.53; p < 0.001, n = 47).
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Figure 5. Examples of images of chimpanzee nests: captured during drone surveys (a,b) and observed
from the ground (c,d).

3.2. Factors Influencing Detectability

3.2.1. Factors Influencing the Recall Rate

Our first model included drone/camera pairing and season and vegetation type. From these
variables, only drone/camera pairing significantly influenced the recall rate (likelihood ratio test:
X2 = −10.96, p < 0.001), with the highest probability of nest detection with Pairing B (12.81% probability)
(Figure 6). There was no significant difference in the recall rate between open and closed vegetation
types (likelihood ratio test: X2 = 93.1, df = 41, p = 0.747) or between the beginning and end of the dry
season (likelihood ratio test: X2 = 93, df = 43, p = 0.551) (Table 1).

Figure 6. Effect of drone/camera pairing on the recall rate. Error bars represent 95% confidence
intervals for the predicted probabilities.
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Table 1. Outcomes of GLM to investigate the effect of drone/camera pairing, season and vegetation on
the recall rate.

Predictors
LRT Parameter Estimate

X2 p Value Estimate Std. E. z Value Pr (>|z|)

(Intercept) −2.96 0.59 −5.01 5.66 × 10−7

Drone/camera pairing (Pairing A)
10.96 0.004 **Pairing B 1.43 0.57 −2.49 0.013 *

Vegetation (closed)
0.89 0.828Open 0.3 0.84 0.37 0.722

Season (May 2015)
0.40 0.818Sep-16 −0.35 0.78 −0.45 0.651

Drone/camera pairing:
Vegetation 0.55 0.457
Pairing A: Open vegetation 0.57 0.76 0.74 0.458

Vegetation: Season
7.29 0.993Open vegetation: September 2016 0.01 1 0.01 0.993

The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in the deviance
when comparing models with or without that term. Parameter estimates are reported for all terms in the full model.
* = p < 0.05; ** = p < 0.01.

Our second model (for 2016 data only) included flight altitude, nest height and vegetation type.
We decided to remove nest color from our second model as of the 337 nests recorded by the ground
survey team in 2016, only one was green. The recall rate differed significantly across flight altitude
AGL (likelihood ratio test: X2 = 4.35, p < 0.05), with nests more likely to be detected when flying at a
lower altitude (19.58% probability) (Figure 7). We found a trend towards higher detectability in closed
rather than open vegetation (likelihood ratio test: X2 = 2.79, p < 0.1) (Table 2). There was no significant
difference in nest detection depending on nest height within the tree (likelihood ratio test: X2 = 0.07,
p = 0.789).

 

Figure 7. Effect of the flight altitude (AGL) on the recall rate. Grey ribbon represents 95% confidence
intervals for predicted probabilities.
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Table 2. Outcomes of GLM to investigate the effect of altitude, vegetation type and nest height on the
recall rate.

Predictors
LRT Parameter Estimate

X2 p Value Estimate Std. E. z Value Pr (>|z|)

(Intercept) −1.53 0.28 −5.45 4.98 × 10−8

Flight altitude AGL 4.35 0.037 * −0.47 0.25 −1.90 0.057

Vegetation (closed)
2.79 0.094Open −0.68 0.40 −1.70 0.089

Nest height 0.07 0.789 0.04 0.17 0.27 0.789

The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in deviance when
comparing models with or without that term. Parameter estimates are reported for all terms in the full model.
* = p < 0.05.

3.2.2. Factors Influencing the False Alarm Rate

For this model, we investigated the influence of drone/camera pairing, season, vegetation type
and flight altitude AGL on the false alarm rate. Drone/camera pairing, vegetation type and flight
altitude AGL significantly influenced the false alarm rate (Table 3). Aerial observations from Pairing
A were more likely to be false positives (0.83% probability). The overall false alarm rate was higher
in closed vegetation than in open vegetation but significantly differed between seasons (likelihood
ratio test: X2 = 4.01, p < 0.05). Aerial observations made at the beginning of the dry season (May 2015)
were more likely to be false positives when recorded in open vegetation (0.94% probability opposed to
0.19% probability for closed vegetation). The false alarm rate significantly increased at lower altitude
(likelihood ratio test: X2 = 9.55, p < 0.05) (Figure 8).

Table 3. Outcomes of GLM investigating the effect of the drone/camera pairing, season, vegetation
type and flight altitude AGL on the false alarm rate.

Predictors
LRT Parameter Estimate

X2 p Value Estimate Std. E. z Value Pr (>|z|)

(Intercept) −3.03 1.19 −2.54 0.011 *

Drone/camera pairing (Pairing A)
14.14 1.17 × 10−4 ***Pairing B 3.69 1.08 3.40 6.73 × 10−4 ***

Vegetation (closed)
23.23 1.44 × 10−6 ***Open 5.72 1.99 2.87 0.004 **

Season (May 2015)
0.04 0.834Sep-16 2.86 1.16 2.47 0.013 *

Flight altitude AGL 9.55 0.002 ** 2.01 0.90 2.24 0.025 *

Drone/camera pairing: Vegetation
0.05 0.824Pairing A: Open vegetation −3.72 1.56 −2.38 0.017 *

Season: Vegetation
4.01 0.045 *Sept 2016: Open vegetation −7.27 1.83 −3.98 6.83 × 10−5 ***

Vegetation: Flight altitude AGL
0.37 0.542Open vegetation: Flight altitude AGL −5.98 1.63 −3.67 2.40 × 10−4 ***

The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in deviance when
comparing models with or without that term. Parameter estimates are reported for all terms in the full model.
* = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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(a) (b) 

 
(c) 

Figure 8. Effect of (a) drone/camera pairing; (b) vegetation type within season and (c) flight altitude
above ground level (AGL) on the false alarm rate. Error bars and grey ribbon represent 95% confidence
intervals for predicted probabilities.

4. Discussion

We investigated the feasibility of using drones to detect chimpanzee nests in the Issa Valley,
western Tanzania, and evaluated the influence of image resolution, seasonality, vegetation type,
nest height and color on nest detectability. An average of 10% of the nests observed from the
ground were detected from the air, with improved nest detection in imagery with higher spatial
resolution. Our overall detection rate was lower than that previously reported for chimpanzee nests in
Gabon (39.9%) [46] and orangutan nests in Indonesia (17.4%) [45]. This discrepancy is likely due to
methodological differences and our systematic approach. In their study, van Andel et al. [46] used two
approaches that biased the probability of detection. In the first, they collected nest data first via ground
surveys and then used the location of the recorded nests to confirm their presence in drone images.
In the second, nests were first detected on drone images and then confirmed on the ground using the
location of the aerial observations. These methods effectively demonstrated that it was indeed possible
to detect chimpanzee nests from drones, although these specific approaches resulted in an increased
probability of detecting a nest in the drone images for the first approach and on the ground for the
second approach. Wich et al. [45] used a buffer of 25 m around nests recorded on the ground to select
which nest detected from the air would be included in the analyses, comparing the relative density of
nests from the aerial and ground-based surveys. The smaller 15 m buffer used in our study could be
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associated with our smaller detection rate, i.e., we were more conservative regarding what constituted
a match. Moreover, aerial nest surveys may be more efficient for orangutan nests as they tend to build
nests higher in the tree canopy and visual contrasts of nest materials and canopy color are seemingly
more apparent in these habitats [58,59].

Of the factors hypothesized to influence the probability of chimpanzee nest detection in
drone-derived aerial imagery, only image resolution was identified as having a significant influence on
the recall rate, with a higher probability of nest detection associated with the higher-resolution camera
at a lower flight altitude AGL. This finding is consistent with that of Mulero-Pázmány et al. [39],
who also found that the targets (i.e., rhinoceros, people acting as poachers) were better detected
with a lower-flying drone. Our results are also consistent with those of Dulava et al. [49], who
reported a significant negative relation between ground sampling distance (GSD) and correct waterbird
identification with a minimum of 5 mm GSD. In our study, we favored flight altitude AGL above GSD
as a measure of resolution because of identical camera parameters, however, the two are conceptually
interchangeable. We obtained the highest probability of nest detection at the lowest possible flight
altitude (AGL: 65 m), corresponding to 1.4 cm GSD. Flying at lower altitude would have threatened
drone safety. These findings reflect the inherent trade-offs between monitoring at a high spatial
resolution (grain) versus across broad spatial extents, such as ground sampling distance (GSD) and
ground sampling area (GSA), scale inversely with one another. This highlights the importance of the a
priori identification of the minimum GSD required to detect ground targets from the air during the
survey design period, particularly if planning for extensive area surveys where the balance between
GSD and GSA should be optimized.

Contrary to expectations, we did not find a significant influence of nest height on aerial nest
detection. Nests constructed higher in trees are expected to be more visible from the air, however,
the visibility also depends on the height of the tree (i.e., a nest at 15 m will be more visible in a tree
of 15 m height than in a tree of 20 m). The inclusion of tree height into models will be important in
subsequent analyses.

Another surprising result of our study was the lack of influence of canopy cover and vegetation
type, with no significant differences between the probability of nest detection in the leaf-off season
and the “greener season” as well as between the more open miombo woodland vegetation and
the closed, riverine forest. Even more surprising, the probability of nest detection tended to be
higher in closed rather than in open vegetation. This finding contradicts numerous other studies that
demonstrated a significant improvement of target detection from drone imagery in more open habitats
(e.g., [29,39,46,50,60]). A possible explanation for this might be the difficulty of detecting brown
nests against a similarly colored background, in this case the less continuous and more earth-toned
colors of the Miombo woodland and the grassland mosaic. Light body color has been demonstrated to
negatively influence animal detection during aerial surveys in a conservation area of northern Tanzania
(e.g., dark Ostrich (Struthio camelus) better detected than light Grant’s gazelle (Nanger granti)) [29].
The results from Chabot and Bird [61] further support the importance of contrast in target detection.
In their investigation into the use drones to survey flocks of geese they reported a poor detection of
low-contrast Canada Geese (Branta canadensis) but good aerial survey performance for the high-contrast
Snow Geese (Chen caerulescens) resulting in more efficient aerial count compared to ground count
(60% higher). We were unable to test the role of contrast in our study due to an insufficient sample of
recent (green) nests.

Findings from the analysis of the factors influencing false alarm rates support this hypothesis.
Different vegetation types significantly affected the false alarm rate depending on the season. The false
alarm rate was higher in miombo woodland at the beginning of the dry season. The canopy cover
in miombo woodland is much higher during this period than at the end of the dry season. At the
beginning of the dry season, the miombo woodland reflects a mosaic of green leaves and a brown
understory, leading to potential misinterpretation of aerial data. At the end of the dry season, however,
reflection is mostly from the brown understory, making nest detection more difficult but more accurate.
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As only Paring A was flown in both seasons, we acknowledge that technological factors may play a
role in these seasonal effects, however we strongly believe future studies will benefit from considering
and further exploring the effects of seasonal canopy differences on nest detection.

The limitations on the use of drones to survey chimpanzees are threefold. Firstly, only a small
proportion of chimpanzee nests are detectable from the air. Most chimpanzee nests are built in the
middle of the tree crown [62] making them undetectable from above the tree canopy [46]. Chimpanzees
also exhibit ground night nesting [63], which would also be difficult to detect from aerial surveys.
Secondly, the high proportion of false alarm rate highlighted in this study is problematic. The false
alarm rate is an important parameter that must be taken into consideration when assessing new
wildlife survey methods, as it may lead to an overestimation of the population density [29]. However,
the false alarm rate has not been described in previous studies investigating the use of drones to detect
great ape nests. In this study, we reported a 42.8% false alarm rate. These aerial observations, for
which the location did not align with any of the nests spotted from the ground, can be explained in
two ways: (1) These could be nests visible from the air, but not the ground, as would be the case of
nests high in the canopy that might be obscured from ground teams by the mid-canopy. Van Schaik et
al. [64] noted that nests can go undetected during ground surveys, resulting in an underestimation of
ape densities; (2) alternatively, false positives could represent dead leaves or canopy gaps revealing the
brown understory that was mistaken for nests. This uncertainty represents an important problem in
the deployment of drones to assess chimpanzee presence/density, especially in a new area where little
information is available. We argue here that whilst aerial imagery offers an improvement in spatial
coverage and data collection time and frequency, this approach still requires complimentary validation
from ground surveys. Finally, the time associated with analyzing thousands of images to identify nests
represents an additional key limitation to using drones in this context.

The limitations we discussed above are significant but not prohibitive, and the findings from
our study provide guidance for future investigation on the use of drones for ape population surveys.
Firstly, it is important to generate high spatial resolution images and lower GSD, providing greater
details and significantly increasing the probability of nest detection. For our survey, we decided
to use fixed-wing drone models allowing longer flights that can cover larger areas. Because of the
mountainous terrain, flying at lower altitude was not possible. Most chimpanzees do not live across
mountainous terrain, therefore this problem would not affect large parts of their range. Multirotor
drones have smaller flight time capacities but can fly at lower altitudes [65]. This technology is
improving rapidly (e.g., drone design optimization allowing longer flight time [66,67]), which could
make multirotors a viable option in the future. Meanwhile, camera resolution is improving, which will
allow future studies to obtain higher resolution images from fixed wing surveys. Reliable detection
also requires a high contrast background. During both our survey seasons, the brown understory made
nest identification difficult. We therefore recommend conducting future surveys during seasons with
green vegetation on the ground to contrast otherwise brown nests. We acknowledge that this context
might reduce the probability of detecting fresh green nests, however, given their low abundance, their
non-detectability is less likely to impact chimpanzee density estimations. Multispectral sensors may
help address this problem. Widely used for landcover classification and vegetation monitoring [68–73]
this technology uses green, red, red-edge and near infrared wavebands to capture detail not available
to standard RGB cameras. Green vegetation materials are characterized by high reflectance in the near
infra-red (NIR) domain (outside of the spectral range of human vision); a multispectral camera can
provide useful contrast to discriminate between live and dead vegetation. Furthermore, it would be
interesting to assess the potential of oblique aerial images. This perspective may offer better glimpses
through foliage and more intuitively interpretable representations of the targets. Another step would
be to assess the potential of 3D mapping of the canopy surface for nest detection. 3D models can
now be created using point clouds from drone imagery [74] providing better perspectives for visual
interpretation of the data. Another complimentary approach would be to use light detection and
ranging (LiDAR) technology. Recently developed at sizes suitable for drone payloads [75], this remote
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sensing technique offers new insights beyond simple top of canopy structure that may help nest
detectability algorithms. For example, these technologies could be used to better establish the habitat
characteristics of trees holding nests. These data could be used in computer vision algorithms [76–79] to
refine automatic nest detection, possibly reducing the false alarm rate. A recent study on using a drone
to detect eagle nests reported 75% nest detection using a semi-automated method [80]. Similar to the
difficulties encountered with chimpanzee nest detection, eagle nests are found in highly heterogeneous
environments with many features that resemble nests, at small scale (~1–2 m), and with variable nest
size, shape and context. This result is promising for broader nest detection applications, including
those of great apes.

Given the shy and elusive nature of great apes, direct surveys are rarely feasible. Researchers
thus must rely on indirect signs to estimate population density. However, to convert nest counts
into ape density, the nest decay rate and nest production rate are required. These factors are
highly dependent on apes species and environmental characteristics, and therefore require extensive
study [26]. Recent studies have now shown the potential of thermal cameras mounted on drones for
animal detection [39,76,81]. However, this approach would require extensive spatial coverage and
further research is required to assess whether apes could be detected using a thermal camera mounted
on a drone.

5. Conclusions

The design and execution of great ape surveys are crucial to allocating conservation efforts to
where they are most needed, but face many logistical challenges, particularly when they must be
implemented across broad areas. Drone surveys could be a revolutionary method, allowing rapid and
frequent monitoring in remote and poorly-understood areas, with data accessible immediately and
containing a rich variety of information about habitat and other conservation revelation conditions.
The limitations we discussed above are meaningful but not prohibitive, and the rapid pace of
technological improvement suggests many promising solutions in a near future. Assessing the
potential of drones to detect chimpanzee nests has major implications, not only for chimpanzee
monitoring across Tanzania, but also for all great apes monitoring. This technology could be applied
to survey extensive areas filling problematic gaps in our current understanding of ape distribution and
abundance [82], providing key information for conservationists.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-446X/2/2/17/s1,
Figure S1: Locations of nests observed from the ground, Figure S2: Aerial observations (true positives and false
positives) recorded from drone surveys.
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