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1.0 Executive summary 

The Wetland Identification Model (WIM) is an automated geoprocessing workflow created 

through original research at the University of Virginia. The workflow derives topographic 

indices from a high-resolution DEM and uses these as inputs to a machine learning algorithm to 

predict the areal extent of wetlands. The creation and testing of the WIM resulted in 2 peer-

reviewed journal articles (O’Neil et al., 2018; O’Neil et al., 2019). Although originally created as 

a python workflow using various open source libraries, the WIM is now available as an ArcGIS 

toolset operating on the Esri software, specifically ArcGIS Pro 2.5 and higher. This document 

describes the implementation of WIM within the Arc Hydro Pro framework.  

1.1 Document history 

Table 1. Document Revision History 

Version Description Date 

1 Initial document (GLO). March 2020 
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2.0 Getting started with WIM 

The WIM is included in the installation of Arc Hydro Pro 2.5. Guidelines for installing Arc 

Hydro can be found here. Users should install version 2.0.165 or higher of Arc Hydro from 

http://downloads.esri.com/archydro/ArcHydro/Setup/Pro/. Testing data used in this 

documentation can be found here.  

To run the WIM tools, users also must install the Scikit-Learn python package to their ArcGIS 

Pro python environment. Without doing so, tools “Train Random Trees,” “Run Random Trees,” 

and “Assess Accuracy” will fail. To install the Scikit-Learn package, users should:  

1. Clone the default ArcGIS Pro python environment. 

o In an ArcGIS Pro project, select the “Project” tab  

o Select the “Python” tab 

o Select “Manage Environments” 

o Select “Clone Default” 

 

  

https://community.esri.com/message/393615-arc-hydro-installation-versions-and-documentation
http://downloads.esri.com/archydro/ArcHydro/Setup/Pro/
http://downloads.esri.com/archydro/archydro/Tutorial/Data/
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2. Add the Scikit-Learn package to the cloned environment. 

o With the cloned environment selected in the Python Package Manager page, 

select “Add Packages” 

o Navigate to Scikit-Learn and install the latest version. 

 

3. Ensure that this cloned, modified python environment is selected for the current session 

before using the WIM tools. 
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3.0 Solution overview 

The WIM is implemented as nine Arc Hydro python tools in a separate toolset, titled “Wetland 

Identification,” and added to the Arc Hydro Tools Python Toolbox for ArcGIS Pro (Figure 1). 

Included in the toolset is an ArcGIS model that automates the execution of the tools in proper 

sequence.  

 

Figure 1. Arc Hydro Pro toolset implementation of the Wetland Identification Model 

The WIM consist of three main parts: preprocessing, predictor variable calculation, and 

classification and accuracy assessment (Figure 2). Required input data are a high‐resolution 

digital elevation model (DEM) and verified wetland/nonwetland coverage (i.e., ground truth 

data), both in TIFF format. The current implementation also requires a surface water input raster, 

although future implementations will derive this directly from the input DEM. An optional input 

layer is a training sampling constraint raster, explained in greater detail later in this document. 

Final model outputs are wetland predictions and an accuracy report. The current implementation 

of the WIM uses the TIFF raster format for output rasters. Executed as intended, the workflow 

(Figure 2) should be as follows.  

1. The input DEM is smoothed and then conditioned.  

2. The preprocessed DEM is used to calculate the predictor variables: the topographic 

wetness index (TWI), curvature, and cartographic depth‐to‐water index (DTW).  

3. Training data are derived from the ground truth data.  

4. The training data are coupled with the merged predictor variables to train a Random 

Trees (Breiman, 2001) model.  
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5. The ground truth data that were not used to train the model are used to assess the 

accuracy of predictions. 

 

Figure 2. Overview of the Wetland Identification Model 

  



 

 

Arc Hydro – Wetland Identification Model 6 1/2020 

3.1 Database design 

It is recommended to follow the presented database design. The folder structure is as follows.  

 

Although the folder structure mirrors the Arc Hydro design, the Layers feature dataset is unused 

as no feature classes are created. The contents of the other folders are as follows. 

 “MyProject\Layers” subfolders: 

1. “inputs” 

a. Stores the input data in TIFF format. These data must include the DEM, ground 

truth dataset, and surface water raster. This folder will also optionally contain the 

training area constraint raster. 

b. If running multiple trials of the WIM, the contents of this folder will not change.  

2. “model” 

a. Stores data that directly impact or are directly impacted by the Random Trees 

model. This includes the training and testing rasters, and the variable importance 

measures that are calculated each time a model is trained.  

b. The contents of these files should be kept for reference over the course of trials 

that evaluate different training sampling scenarios. 

3. “outputs” 

a. Stores the prediction outputs from the Random Trees model. This will always 

include a prediction raster, where each cell is assigned a class. This folder may 

also include prediction probability rasters. 
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4. “predictor_variables” 

a. Stores the predictor variables that are used to train the Random Trees model. If 

preprocessing parameters change, new contents will be added to this folder.  

5. “secondary_outputs” 

a. Stores intermediate raster outputs. These will include the smoothed DEM, 

hydroconditioned DEM, TWI components, and DTW components. If users have 

already used these rasters to derive predictor variables (see sections 2.3.3 – 2.3.5), 

the contents of this folder can be archived to free disk space. 

“MyProject\train_model_predict_metrics” contents: 

1. This folder (named according to user input) contains the accuracy metrics used to 

summarize model performance. These are not GIS data, but rather various plots and 

tables. 

3.2 Output data naming conventions 

The WIM creates numerous output data structures. To ensure consistency of application and 

result data, resulting data should follow predetermined data and naming conventions. These 

include the following: 

1. Processed DEMs are saved with compounding prefixes that describe the preprocessing 

methods applied. For example, “dem_pm_100_fil” is a DEM that was smoothed using 

the Perona-Malik method with 100 iterations, then filled. This is recommended to keep 

track of the effect of DEM preprocessing on wetland modeling accuracy 

2. By default, predictor variables are saved with the base name of the preprocessed DEM 

and a suffix with the pattern “_[var].tif.” This is recommended to keep track of the effect 

of DEM preprocessing on wetland modeling accuracy, and how the best-performing 

preprocessing methods may differ across predictor variables. 

3. Training and testing rasters are saved as “train.tif” and “test.tif” by default. However, 

users are encouraged to edit these output names to reflect the training sampling scenario 

applied, since the base name of the training raster is adopted by subsequent prediction 

outputs and the accuracy metrics directory. An example of recommended naming 

convention would be “train_0_50_1_20.tif” and “test_0_50_1_80.tif”. These names 

reflect that 50% of class 0 and 20% of class 1 were used for training, and the accuracy 

assessment will apply to the remaining 50% and 80% of class 0 and 1 cells, respectively. 
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4. As detailed above, prediction outputs and the location of accuracy metrics are named 

using the training raster base name by default. This is recommended to keep track of the 

effects of training sampling scenarios on model accuracy.  
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3.3 Tool operations 

The following sections present operation for the nine WIM tools. Although we provide 

suggestions and starting points for the execution of the tools, users should keep in mind that 

WIM parameters will vary by the landscape and application. It will likely be an iterative process 

to find the WIM parameters best suited to a user’s specific study area and end goal for results. 

For more detailed discussion on the methods applied and the justification for their use in the 

WIM workflow, see O’Neil et al. (2018; 2019).  

3.3.1 Preprocessing: Smooth High-Resolution DEM 

This tool creates a smoothed DEM using one of four methods: mean, median, Gaussian, or 

Perona-Malik. These four methods were selected for their common use in hydrology-related 

applications. Smoothing is used to blur DEMs to remove the changes in elevation that are too 

small to indicate features of interest (i.e., microtopographic noise), which are ubiquitous in high-

resolution DEMs. The scale of smoothing, or proxy for the scale of smoothing, determines the 

size of features that are preserved. In many cases, the Perona-Malik smoothing method with at 

least 50 smoothing iterations is a good starting point for analyses. However, users are 

encouraged to explore other options depending on the application. For more detailed discussion, 

users should see O’Neil et al. (2019). Inputs and outputs are shown in the example run. 

The tool performs the following actions: 

1. Applies a selected smoothing method 

a. Mean smoothing performs a linear convolution using the user-defined smoothing 

width (meters). This smoothing window slides across the input DEM and the 

center cell of each window is replaced with the mean of all cells within the 

window. The rate of smoothing is determined by the smoothing width. 

b. Median smoothing performs a nonlinear convolution using the user-defined 

smoothing width (meters). This smoothing window slides across the input DEM 

and the center cell of each window is replaced with the median of all cells within 

the window. Median smoothing is less affected by outliers in windows and is 

typically well-suited to salt-and-pepper type noise. The rate of smoothing is 

determined by the smoothing width. 

c. Gaussian smoothing performs a linear convolution using a Gaussian function. The 

rate of smoothing is determined by the Gaussian kernel, where the standard 

deviation parameter acts as a proxy for a smoothing width (meters). Users should 

note that Gaussian smoothing results in boundary effects that cause 

erroneous values at the edges of the input DEM. The smoothed DEM will be 

returned with smaller extents to remove these values. 
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d. Perona-Malik smoothing performs a nonlinear, anisotropic smoothing. This 

method estimates geomorphic feature boundaries to be where the slope is steeper 

than 90% of all slopes within the DEM. Smoothing is promoted only between 

estimated feature boundaries to preserve feature edges and achieve preferential 

smoothing. The rate of smoothing is determined by the number of smoothing 

iterations. 

 

2. Applies a rate of smoothing parameter 

 

a. For mean and median smoothing, the smoothing width refers to the X and Y 

length of the smoothing window in meters. If linear units of the DEM are not in 

meters, the conversion is executed automatically. Features smaller than the area of 

the smoothing window will be blurred. 

 

b. For Gaussian smoothing, the smoothing width is used to approximate the standard 

deviation used in the Gaussian kernel, according to Lashermes et al. (2007). If 

linear units of the DEM are not in meters, the conversion is executed 

automatically. Execution of Gaussian smoothing in the WIM is based on code 

from Sangireddy et al. (2016). 

 

c. For Perona-Malik smoothing, the number of iterations determines the scale of 

features preserved and smoothed, however this parameter has no unique and 

uniform equivalent spatial scale (Passalacqua, Do Trung, et al., 2010). A higher 

number of iterations will result in coarser output landscapes. Execution of Perona 

Malik smoothing in the WIM is based on code from Sangireddy et al. (2016). 
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3.3.1.1 Example run 

 

3.3.1.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created.   
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3.3.2 Preprocessing: Hydrocondition High-Resolution DEM 

This tool resolves topographic depressions using Fill, a widely used method for extracting 

hydrologic parameters from DEMs. Topographic depressions may represent erroneous or actual 

features. If topographic depressions are not resolved, they can impact overland flow modeling by 

accumulating water and creating flow path discontinuities (Jenson & Domingue, 1988; 

O'Callaghan & Mark, 1984). The sensitivity of hydrologic modeling to the hydroconditioning 

technique chosen increases with the resolution of the input DEM, making this step especially 

important for hydrologic modeling from LiDAR DEMs (Grimaldi et al., 2007; Lindsay, 2016; 

Lindsay & Creed, 2005; Woodrow et al., 2016). In the current implementation, the only available 

method is Fill. However, future implementations may include methods that are better suited to 

hydrologically correcting high-resolution DEMs. Inputs and outputs are shown in the example 

run.  

The tool performs the following actions: 

1. Applies the Fill hydroconditioning method. Fill removes depressions by adjusting the 

elevation of a depression pixel to match the elevation of the surrounding pixels (Jenson & 

Domingue, 1988; Planchon & Darboux, 2002; Wang & Liu, 2007).  

3.3.2.1 Example run 

It is highly recommended that users select the smoothed high-resolution DEM as the input 

DEM, although the tool will also operate on regular DEMs.  
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3.3.2.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created.   

 

3.3.3 Predictor Variable Calculation: Calculate Depth to Water Index 

This tool calculates the cartographic depth-to-water index (DTW) to be subsequently used as a 

predictor of wetland areas. The DTW, developed by Murphy et al. (2007), is a soil moisture 

index based on the assumption that soils closer to surface water, in terms of distance and 

elevation, are more likely to be saturated. Calculated as a grid, the DTW is defined as  

𝐷𝑇𝑊 (𝑚) =  [∑ (
𝑑𝑧𝑖

𝑑𝑥𝑖
) 𝑎] ∗ 𝑥𝑐,  (1) 

where 
𝑑𝑧

𝑑𝑥
 is the downward slope of cell 𝑖 along the least-cost (i.e., slope) path to the nearest 

surface water cell, 𝑎 is a factor accounting for flow moving parallel or diagonal across pixel 

boundaries, and 𝑥𝑐 is the cell resolution (Murphy et al., 2007). The WIM implementation of eq. 

(1) requires two inputs: a slope raster to represent the cost surface and a surface water raster to 

represent the source location. In its current implementation, users must provide a surface 

water raster; however, this will become optional in the future when the tool has the 

capability to estimate open water locations directly from the DEM. Inputs and outputs are 

shown in the example run. 

The tool performs the following actions: 



 

 

Arc Hydro – Wetland Identification Model 14 1/2020 

1. Calculates a DTW-specific slope raster from the input DEM, unless one is provided as an 

optional input.  

2. Optionally saves the intermediate outputs created during processing.  

3. Creates the DTW raster using the surface water raster as the source and the DTW slope 

raster as the cost.  

3.3.3.1 Example run 

It is highly recommended that users calculate the DTW from a smoothed, high-resolution DEM. 

Otherwise, microtopographic features will be modeled by the resulting DTW raster and may 

decrease the accuracy of the final wetland predictions. It is also unnecessary to use the 

hydroconditioned DEM here, since no flow paths are being generated. It is recommended to use 

just the smoothed DEM to provide a less-altered representation of the land surface. Note, in this 

current implementation, the Input Surface Water Raster is required. 
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3.3.3.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 
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3.3.4 Predictor Variable Calculation: Calculate Curvature 

This tool calculates the curvature (i.e., the second derivative) of the land surface to be 

subsequently used as a predictor of wetland areas. Curvature can be used to describe the degree 

of convergence and acceleration of flow (Moore et al., 1991). Inputs and outputs are shown in 

the example run. 

The tool performs the following actions: 

1. Calculates the curvature of the input. 

3.3.4.1 Example run 

It is highly recommended that users calculate curvature from a smoothed, high-resolution DEM. 

Otherwise, microtopographic features will be modeled by the resulting curvature raster and may 

decrease the accuracy of the final wetland predictions. It is also unnecessary to use the 

hydroconditioned DEM here, since no flow paths are being generated. It is recommended to use 

just the smoothed DEM to provide a least-altered representation of the land surface. 
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3.3.4.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 
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3.3.5 Predictor Variable Calculation: Calculate Topographic Wetness Index 

This tool calculates the topographic wetness index (TWI) to be subsequently used as a predictor 

of wetland areas. The TWI relates the tendency of an area to receive water to its tendency to 

drain water, and is defined as 

𝑇𝑊𝐼 = ln(
𝛼

tan 𝛽
),  (2) 

where α is the specific catchment area (contributing area per unit contour length) and tan(β) is 

the local slope (Beven & Kirkby, 1979). The WIM implementation of eq (2) requires a TWI 

slope and specific catchment area as inputs, although both can be calculated directly from the 

input high-resolution DEM. Inputs and outputs are shown in the example run. 

The tool performs the following actions: 

1. Calculates a TWI-specific slope raster from the input DEM, unless one is provided as an 

optional input.  

2. Calculates a specific catchment area raster from the input DEM, unless one is provided as 

an optional input.  

3. Optionally saves the intermediate outputs created during processing.  

4. Creates the TWI raster by implementing eq. (2) as a raster algebra expression.  

  



 

 

Arc Hydro – Wetland Identification Model 19 1/2020 

3.3.5.1 Example run 

It is highly recommended that the input DEM be the result of the Smooth High-Resolution DEM 

tool followed by the Hydrocondition High-Resolution DEM tool (i.e., a smoothed, conditioned 

high-resolution DEM). Users must use a hydroconditioned input DEM to avoid undefined values 

in the resulting TWI raster. In addition, without smoothing microtopographic features may affect 

the accuracy of the final wetland predictions.  
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3.3.5.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 
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3.3.6 Classification and Accuracy Assessment: Train Test Split 

This tool splits the input ground truth raster into two subsets: training and testing data. The 

training raster is created by randomly sampling a user-defined percentage of each ground truth 

class. The testing raster is the complement of the training raster, comprised of the remaining, 

unsampled cells. The training raster is subsequently used to train the supervised classification 

algorithm by providing cells labeled with their true class. In a later step, these are matched to 

predictor variables for the same locations and used to learn the characteristics of that class. The 

testing raster is subsequently used to measure the accuracy of class predictions for cells that were 

not included in the training phase. For further discussion on training sampling scenarios for the 

WIM, see O’Neil et al. (2019). Inputs and outputs are shown in the example run. Below is an 

example of the inputs to this tool used for this demo. 

 

Figure 3. Example of the ground truth dataset (grey and blue areas), which gives the true land cover, and a training 

sampling constraint, which delimits the portion of the ground truth dataset that training data can be sampled from. 
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The tool performs the following actions: 

1. Checks that the input class names match exactly the unique values in the ground truth 

raster. 

2. Checks if cells should be sampled from the entire extents of each class or only within the 

training sampling constraint. 

3. Randomly samples the number of cells from each class that reflects the user-input 

percentage.  

4. Combines the cells sampled from each class into a single raster and saves to the output 

training raster. The remaining cells are combined into another raster and saved to the 

output testing raster. 

3.3.6.1 Example run 
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3.3.6.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 
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3.3.7 Classification and Accuracy Assessment: Train Random Trees 

This tool executes the training phase of the Random Trees algorithm. In this phase, the algorithm 

takes bootstrap samples of the training dataset, including the labeled cells in the training raster 

and the predictor variables. A decision tree is created from each bootstrap sample, and all are 

used to learn the indicators of the ground truth classes based on information from the predictor 

variables. In doing this, the Random Trees algorithm is less susceptible to overfitting. This tool 

uses the Scikit-Learn Python library (Scikit-Learn Developers, 2017a) to execute the Random 

Trees algorithm. For a more detailed discussion of the algorithm and its fit for the WIM, see 

O’Neil et al. (2019). Inputs and outputs are shown in the example run.  

The tool performs the following actions: 

1. Prepares the predictor variable raster(s) for use by the Scikit-Learn library. If more than 

one predictor variable raster is given, a composite raster is created from all input 

predictor variables and saved to the Prepared Predictor Variable Raster name. If only one 

raster is passed, it will be copied and saved to the Prepared Predictor Variable Raster 

name, but it can be disregarded for later steps. In either case, the cells in the prepared 

raster are extracted only where the training labels before further use.  

2. Initializes the Random Trees model according to the number of trees, the maximum tree 

depth, the maximum number of features, and the class weights. If users omit these 

parameters or leave them unaltered, default values are used. Users should see Scikit-

Learn documentation for further details on these parameters (Scikit-Learn Developers, 

2017a).  

3. Trains the initialized model given the training dataset. Saves the trained model to a 

JOBLIB file. 

4. Saves the variable importance measures to a TXT file. These measures provide an 

estimate of the decrease in accuracy of the model if that predictor variable was removed. 
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3.3.7.1 Example run 
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3.3.7.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 
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3.3.8 Classification and Accuracy Assessment: Run Random Trees 

This tool uses the trained Random Trees model to predict the class for the cells of the input 

predictor variables. Predictions do not need to be made in the same area for which the model was 

trained, but the calculation of the predictor variable(s) must be the same. In this case, a model 

can be trained using the DTW, Curvature, and TWI for one area and used to make predictions for 

a new area, if DTW, Curvature, and TWI have also been derived and are used as inputs. Inputs 

and outputs are shown in the example run. 

The tool performs the following actions: 

1. Loads the JOBLIB model and uses it to predict wetland and nonwetland areas for the 

predictor variables raster. Internally, the random trees algorithm uses the relationships 

learned between the predictor variables and class values during training and determines 

the final predicted class based on the majority vote of all decision trees created.  

2. If “Save probability rasters” is True, uses the JOBLIB model to produce the probability 

raster for each target class (e.g., wetland and nonwetland). The values in these rasters 

represent the probability that the cell belongs to the class in question on a 0-1 scale. 

These outputs can be useful for decision makers where the tradeoff between wetland 

detection and overprediction can be examined. Producing and saving these outputs also 

allow for a more thorough accuracy assessment in later steps.  
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3.3.8.1 Example run 
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3.3.8.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). Any 

output directories that do not exist will be created. 

 

Below are images of model output created using the parameters outlined here. First, the model 

prediction, followed by the wetland class probability raster. 
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Figure 4. An example of wetland and nonwetland predictions produced by the workflow, with the outline of the ground 

truth wetlands shown for reference. 
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Figure 5. An example of the wetland likelihood estimated by the workflow, with the outline of the ground truth wetlands 

shown for reference. 
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3.3.9 Classification and Accuracy Assessment: Assess Accuracy 

Given the predicted output from the preceding step and a corresponding raster with ground truth 

labels for the cells (i.e., the testing raster), this tool generates accuracy metrics that summarize 

the model’s ability to predict wetlands and nonwetlands. Additional metrics are generated if the 

user includes output class probability rasters. Accuracy metrics were chosen to avoid misleading 

assessments of imbalanced ground truth classes, which is typical of wetland/nonwetland 

distributions. For further details and justification for the metrics chosen, see O’Neil et al. (2019). 

Accuracy metrics are calculated using the Scikit-Learn library (Scikit‐learn Developers, 2017b). 

Inputs and outputs are shown in the example run. Note that the accuracy assessment process 

assumes that every cell in the testing dataset has been assigned its ground truth class. That is, all 

wetland and nonwetland areas indicated are exhaustive of all wetland and nonwetland areas 

within the extents of the ground truth dataset. In the demo applications shown here, that is not 

necessarily true, and therefore, user should interpret these results as a demonstration of tool 

outputs rather than an indication of model performance. 

The tool performs the following actions: 

1. Creates a new directory for accuracy metrics if the specified one does not already exist.  

2. If necessary, extracts the prediction raster cells that overlap with the testing raster cells. 

3. Calculates and plots a confusion matrix. The confusion matrix categorizes each cell 

(represented in units of km2 and m2) into one of four groups: true positive, true negative, 

false positive, or false negative. These categories indicate that the predicted cell either 

correctly identified wetland area, correctly identified nonwetland area, incorrectly 

identified a wetland area, or incorrectly identified a nonwetland area, respectively. The 

plots are saved as PNG files to the accuracy metrics directory as “conf_matrix” and 

“conf_matrix_meters.” 

4. Creates a classification report and saves to a TXT file as “summary_stats.” For each 

class, this report gives the precision, recall, f1-score, and support. Although metrics are 

calculated for each class, the descriptions below focus on the interpretation of scores for 

the wetland class. Note that other metrics given by the classification report may be 

misleading for imbalanced class predictions. For more information on these, users should 

see the Scikit-Learn documentation (Scikit‐learn Developers, 2017b). 

 

Precision is a metric that accounts for overprediction of the positive class (i.e., wetlands), 

without being biased by disproportionately large populations of the negative class (i.e., 

nonwetlands). Precision is the percentage of wetland predictions made that were correct, 

calculated as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
. (3) 

Recall is a metric of class detection, giving the percentage of true wetlands that were 

correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑇𝑟𝑢𝑒 𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠
. (4) 

F1 score represents a weighted average of precision and recall, where the best F1 score is 

a value of 1 and a worst score is a value of 0. It is important to note that this metric 

assumes that high detection rate and low overprediction are equally important to 

stakeholders. Other forms of the F1 score exist where these components can be given 

different weights. The F1 score is defined as 

𝐹1 =
2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
.  (5) 

 Finally, support represents the total samples (number of cells) in the true wetland class. 

5. If class probability rasters are passed, calculates and plots precision-recall curves for each 

probability raster, which each corresponds to a single class, given. Precision-recall curves 

plot precision versus recall for each predictive threshold of that class. That is, the curve 

will show the precision and recall scores if each cell required 0-100% probability of 

belonging to a class before being assigned to that class. In addition, the Average 

Precision score is calculated for each precision-recall curve. Average Precision is a 

surrogate for the area under the precision-recall curve, and it is used to summarize model 

performance for the class of interest. An Average Precision score closer to 1 indicates a 

better performing model. The Average Precision metrics is calculated as, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛 , (6) 

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth predictive threshold, respectively. 
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3.3.9.1 Example run 
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3.3.9.2 Example output structure 

The following data structures were created as a result of the tool run (highlighted in yellow). 
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Figure 6. The confusion matrix generated by the accuracy assessment for the demo wetland identification application. 

 

Figure 7. The summary statistics report generated by the accuracy assessment for the demo wetland identification 

application. 
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Figure 8. The precision-recall curve for the 0-class predictions (nonwetland class) generated by the accuracy assessment 

for the demo wetland identification application. 

 

Figure 9. The precision-recall curve for the 1-class predictions (wetland class) generated by the accuracy assessment for 

the demo wetland identification application. 
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3.3.10 WIM tools as an ArcGIS Pro model 

This model automates the entire WIM workflow by linking the above tools in proper sequence. 

As shown below, the tools are organized according to the workflow phase they fall under. Users 

must expand these workflow phase titles to input parameters. Executing this model should be 

considered as just the initial step in the process of developing one’s own wetland model that is 

unique to their needs. After this initial step, users will find it helpful to iterate through tools such 

as Train Test Split or Smooth High-Resolution DEM in order to improve results and calibrate a 

model to a specific landscape. Where appropriate, users should complete this testing by iterating 

through the individual tools rather than executing this ArcGIS Pro model multiple times. Note 

that due to limitations in modifying the User Interface, users will need to re-run Assess Accuracy 

outside of the model to include probability rasters as inputs. Please keep in mind the accuracy 

disclaimer. 
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3.3.10.1 Example run 

In the demo below, we execute the workflow with following parameters, reflected in the output 

names. 

• Mean smoothing with a 100 m smoothing width 

• Fill hydroconditioning 

• 10% of cells belonging to class 0 (nonwetlands) and 60% of cells belonging to class 1 

(wetlands) sampled for training data. Note, sampling of these cells is restricted by the 

input training constraint. 

• 100 decision trees grown 

• Class weights of 1 and 50 for nonwetland and wetland predictions, respectively. 

• Specifying this training/model application to be labeled as “demo”.  
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3.3.10.2 Example output structure 

The output data structures mirror those described in previous sections. Below are images of 

model output created using the parameters outlined here. First, the model prediction, followed by 

the wetland class probability raster. 

 

Figure 10. An example of wetland and nonwetland predictions produced by the above workflow, with the outline of the 

ground truth wetlands shown for reference. 
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Figure 11. An example of the wetland likelihood estimated by the above workflow, with the outline of the ground truth 

wetlands shown for reference. 
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In addition, the outputs from the accuracy assessment are as follows. 

 

Figure 12. The confusion matrix generated by the accuracy assessment for the demo wetland identification application. 

 

 

Figure 13. The summary statistics report generated by the accuracy assessment for the demo wetland identification 

application. 
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Figure 14. The precision-recall curve for the 0-class predictions (nonwetland class) generated by the accuracy assessment 

for the demo wetland identification application. 

 

Figure 15. The precision-recall curve for the 1-class predictions (wetland class) generated by the accuracy assessment for 

the demo wetland identification application. 
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3.4 Results interpretation 

Developing one’s own wetland model that is best suited to their target landscape and end use will 

require several iterations of the WIM and adjusting parameters based on the interpretation of 

model results. It is also recommended that all the provided accuracy metrics are considered 

collectively when evaluation model performance. For example, keeping in mind the accuracy 

disclaimer for the demo application, the demo results can be interpreted as follows.  

Application 1 (Section 2.3.9): 

• Overall, Model Application 1 was a poor estimator of wetlands. 

 

• The confusion matrix (Figure 6) shows a very high True Negative area and very low True 

Positive area. This translates to very complete coverage of nonwetland areas and very 

sparse coverage of wetland areas. While this may lead one to interpret that the model is 

an accurate estimator of nonwetlands, the significantly greater distribution of nonwetland 

area than wetland area (i.e., imbalanced land cover scenario) means that an unskilled 

model that predicted the entire area to be nonwetland would have performed nearly as 

well.  

 

• These observations are supported by the summary statistics (Figure 7), which are 

calculated using values from the confusion matrix. Specifically, the precision and recall 

for class 0 (nonwetland) are suspiciously high. This again points to the ease of correctly 

identifying nonwetland areas because they are so abundant in the landscape. Moreover, 

the very low recall and precision for class 1 (wetland) summarize that few wetlands were 

detected and few of the wetland predictions made were correct.  

 

• The precision-recall curves (Figure 8 and Figure 9) also support the model assessments 

above. Focusing on the curve for class 1, the Average Precision (AP) score is very low. 

Ideally, the AP score would be closer to 1, representing a model that sacrifices little 

precision (i.e., does not make significantly more erroneous wetland predictions) as the 

predictive threshold becomes less strict and more wetland predictions are made. Users 

could gain further insight from these curves by plotting the baseline performance of a 

random classifier, which is the horizontal line plotted at the proportion of ground truth 

occurrences in the landscape (i.e., [ground truth wetlands] / [ground truth wetlands + 

ground truth nonwetlands]). 
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Application 2 (Section 2.3.10): 

• The second demo application was still a poor identifier of wetlands, but an improvement on 

Application 1.  

 

• First, we can see that True Positive predictions increased (Figure 12). This is reflected by a 

higher wetland recall without sacrificing much of the wetland precision score (Figure 13).  

 

• The model for application 2 was still prone to overpredicting nonwetland area, exemplified 

by suspiciously high nonwetland metrics, including the AP score (Figure 14). However, there 

was a slight improvement to the wetland class AP score Figure 15), showing that this model 

became better able to identify wetlands. 

 

Based on the assessments for applications 1 and 2, next steps for model improvement may 

include: 

• Consider alternative training sampling schemes. Although Application 1 used a greater 

quantity of training data overall, Application 2 outperformed with less training data overall 

but a lower sampling of nonwetland area. Literature supports undersampling the majority 

class in an imbalanced scenario can improve the detection rate of the minority class. 

 

• Remove the training constraint or change its location. It is possible that the wetlands found 

within the training constraints shared between the applications are not representative of the 

types of wetlands in the testing area. By sampling more types of wetlands, the model can 

learn a more robust set of wetland characteristics. 

 

• Try additional trials of the DEM preprocessing phase. Literature shows that the best 

performing smoothing method and scale for the DEM may vary between the topographic 

predictor variables. Also, depending on the size of wetlands typical to the target area, 

predictor variables may model the wetland hydrology better when derived at coarser or finer 

scales (i.e., with less or more microtopographic features included) 

 

• Overall, improve the quality of the ground truth datasets. In both applications, we were 

limited by estimating the extents of the wetland delineation. For this reason, it is possible that 

additional wetlands exist in the ground truth dataset. This could lead to unknowingly training 

the model with false ground truth labels. Improving the quality of this data would not only 

improve the model training, but also provide a more representative accuracy assessment for 

the same reasons.  
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4.0 Individual tool help 

4.1 Smooth High-Resolution DEM 

This tool creates a smoothed DEM using one of four methods: mean, median, Gaussian, or 

Perona-Malik. These four methods were selected for their common use in hydrology-related 

applications. Smoothing is used to blur DEMs to remove the changes in elevation that are too 

small to indicate features of interest (i.e., microtopographic noise), which are ubiquitous in high-

resolution DEMs. The scale of smoothing, or proxy for the scale of smoothing, determines the 

size of features that are preserved. Users should choose this parameter based on the scale of the 

hydrologic parameter that is being extracted.  

4.1.1 Input High-Resolution DEM  

DEM raster used for definition of the terrain surface. The DEM must be in TIFF format. Vertical 

units should be in meters, and horizontal units will be converted to meters if necessary. This 

input DEM is also used to define the cell size and extent for all subsequent raster creation. 

4.1.2 Smoothing Method 

The smoothing method options inlcude: “mean”, “median”, “Gaussian”, and “Perona-Malik.” 

These can be chosen from the pull-down, or entered as a string outside of the tool user interface. 

Users should carefully consider which of these smoothing methods are most appropriate for their 

application.  

4.1.3 Output Smoothed DEM 

The output name for the smoothed DEM. This is auto filled based on the smoothing method and 

smoothing rate chosen and saved to the “secondary_outputs” folder. The DEM must be in TIFF 

format. 

4.1.4 Rate of Smoothing: Smoothing Width or Perona-Malik Iterations (Optional) 

There are two possible parameters to control the rate of smoothing: Smoothing Width or Perona-

Malik Iterations.  

a. If users choose mean, median, or Gaussian smoothing methods, then the 

smoothing width parameter will be enabled. If left blank, the default value is 10 

m, however users are encouraged to evaluate the benefit of other values, as they 

can signficantly affect the accuracy of the WIM. 
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b. As the name suggests, the Perona-Malik Iterations parameter becomes enabled 

when users select the Perona-Malik smoothing method. If left blank, the default 

value is 50 iterations, however users are encouraged to evaluate the benefit of 

other values, as they can significantly affect the accuracy of the WIM. 
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4.2 Hydrocondition High-Resolution DEM 

This tool resolves topographic depressions using Fill, a widely used method for extracting 

hydrologic parameters from DEMs. Topographic depressions may represent erroneous or actual 

features. In the current implementation, the only available method is Fill. However, future 

implementations may include methods that are better suited to hydrologically correcting high-

resolution DEMs. Inputs and outputs are shown in the example run.  

4.2.1 Input High-Resolution DEM 

DEM raster used for definition of the terrain surface. The DEM must be in TIFF format. It is 

intended that this will be the smoothed DEM.  

4.2.2 Conditioning Method 

The conditioning method options inlcude “Fill” and “A* Least-Cost Path”; however, only Fill is 

available in the current implementation. 

4.2.3 Output Conditioned DEM 

The output name for the conditioned DEM. This is auto filled based on the hydroconditioning 

method chosen. The default name retains the root name of the input DEM and is saved to the 

“secondary_outputs” folder. The DEM must be in TIFF format. 
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4.3 Calculate Depth to Water Index 

This tool calculates the cartographic depth-to-water index (DTW) to be subsequently used as a 

predictor of wetland areas. The DTW, developed by Murphy et al. (2007), is a soil moisture 

index based on the assumption that soils closer to surface water, in terms of distance and 

elevation, are more likely to be saturated. 

4.3.1 Input Smoothed DEM 

DEM raster used for definition of the terrain surface. The DEM must be in TIFF format. It is 

intended that this will be the smoothed DEM. This DEM is used to calculate DTW components 

if they are not passed as optional parameters. If a pre-calculated slope raster is provided, the 

input DEM is not used in the code, other than to autofill the output DTW raster name. 

4.3.2 Output DTW Raster 

The output name for the DTW raster. This is auto filled to retain the DEM preprocessing steps by 

including the base name of the input DEM. By default, this is saved to the “predictor_variables” 

folder. The DTW must be in TIFF format. 

4.3.3 Save Intermediate Outputs 

Boolean option to save DTW components derived from the input DEM. If this option is checked 

AND a pre-calculated slope raster is NOT given, a DTW slope raster will be saved to 

“secondary_outputs” with the suffix “_dtwSLP.tif” and the DEM base name. Future 

implementations will have similar functionality for a DEM-derived surface water raster. 

4.3.4 Output DTW Slope Raster  

The output name for the DTW Slope raster. This is auto filled to retain the DEM preprocessing 

steps by including the base name of the input DEM. By default, this is saved to the 

“secondary_outputs” folder. 

4.3.5 Input DTW Slope Raster (Optional) 

Slope raster needed for the DTW calculations. The DTW slope raster is in units of m/m (rise/run) 

and has a very small constant (0.001) added to all values to avoid confusion between a zero-

slope area and the source locations (recognized by values equal to zero internally). If the user 

chooses to use a pre-calculated slope raster, they must ensure it meets the specifications above, 

or the output may be inaccurate. 
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4.3.6 Input Surface Water Raster (Optional) 

Surface water raster needed for DTW calculation. Cells that represent surface water must have 

data, while all other cells are null. This raster does not need to be in TIFF format. Note, in this 

current implementation, the Input Surface Water Raster is required. 
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4.4 Calculate Curvature 

This tool calculates the curvature (i.e., the second derivative) of the land surface to be 

subsequently used as a predictor of wetland areas. Curvature can be used to describe the degree 

of convergence and acceleration of flow (Moore et al., 1991). Curvature calculation for the WIM 

requires one input: a high-resolution DEM.  

4.4.1 Input Smoothed DEM 

DEM raster used for definition of the terrain surface. It is intended that this will be the smoothed 

DEM. This DEM is used to calculate the curvature. 

4.4.2 Output Curvature Raster  

The output name for the Curvature raster. This is auto-filled to retain the DEM preprocessing 

steps by including the base name of the input DEM. By default, this is saved to the 

“predictor_variables” folder. The raster must be in TIFF format. 
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4.5 Calculate Topographic Wetness Index 

This tool calculates the topographic wetness index (TWI) to be subsequently used as a predictor 

of wetland areas. The TWI relates the tendency of an area to receive water to its tendency to 

drain water. 

4.5.1 Input Hydroconditioned DEM 

Hydrologically corrected DEM raster used for definition of the terrain surface. The DEM must 

be in TIFF format. It is intended that this DEM will also have been smoothed during 

preprocessing. This DEM is used to calculate TWI components if they are not passed as optional 

parameters. If these components are provided, the input DEM is not used in the code, other than 

to autofill the output TWI raster name. 

4.5.2 Output TWI Raster 

The output name for the TWI raster. This is auto filled to retain the DEM preprocessing steps by 

including the base name of the input DEM. By default, this is saved to the “predictor_variables” 

folder. The TWI must be in TIFF format. 

4.5.3 Save Intermediate Outputs 

Boolean option to save TWI components derived from the input DEM. If this option is checked 

AND pre-calculated TWI inputs are NOT given, a TWI slope raster and TWI specific catchment 

area raster will be saved to “secondary_outputs” with the suffixes “_twiSLP.tif” and 

“_twiSCA.tif”, respectively. The DEM base name will precede these. 

4.5.4 Output TWI Slope 

The output name for the TWI Slope raster. This is auto filled to retain the DEM preprocessing 

steps by including the base name of the input DEM. By default, this is saved to the 

“secondary_outputs” folder. 

4.5.5 Output TWI Specific Catchment Area 

The output name for the TWI Specific Catchment Area raster. This is auto filled to retain the 

DEM preprocessing steps by including the base name of the input DEM. By default, this is saved 

to the “secondary_outputs” folder. 
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4.5.6 Input TWI Slope Raster (Optional) 

Slope raster needed for the TWI calculations. The TWI slope raster has units of 
[𝐿]

[𝐿]
 (

[𝑟𝑖𝑠𝑒]

[𝑟𝑢𝑛]
) and has 

a very small constant (0.001) added to all values. If zero values are present, the TWI raster will 

have undefined values. The TWI Slope must be in TIFF format. If the user chooses to use a pre-

calculated slope raster, they must ensure it meets the specifications above, or the output may be 

inaccurate.  

4.5.7 Input TWI Specific Catchment Area Raster (Optional) 

Specific Catchment Area raster needed for the TWI calculations. The specific catchment area 

raster has units of 
[𝐿2]

[𝐿]
 and is calculated as the contributing area (flow accumulation raster * area 

per cell) divided by the cell width (i.e., cell size). Flow accumulation is calculated using the D-

Infinity algorithm (Tarboton, 1997). In addition, a constant of 1 is added to the flow 

accumulation raster, ensuring that each cell receives flow from at least itself and avoiding 

undefined values in the TWI raster. The TWI Specific Catchment Area must be in TIFF format. 

If the user chooses to use a pre-calculated slope raster, they must ensure it meets the 

specifications above, or the output may be inaccurate.  
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4.6 Train Test Split 

This tool splits the input verification raster into two subsets: training and testing data. The 

training raster is created by randomly sampling a user-defined percentage of each ground truth 

class. The testing raster is the complement of the training raster, comprised of the remaining, 

unsampled cells.  

4.6.1 Input Ground Truth Data 

The ground truth raster containing the true locations of each target class, in this case wetland and 

nonwetland. Each class must be represented by a unique integer value, beginning with value 0 

and increasing for each class. In this demo, the ground truth raster contains values of 0 

(nonwetland area) and 1 (wetland area). 

4.6.2 Class Values 

A comma separated list of the values that correspond to each class in the ground truth raster.  

4.6.3 Percent to Sample from Each Class 

A comma separated list of the percent of each class to use as training data. A random selection of 

the number of cells corresponding to each percentage will be selected for training. The index of 

each percent value must match the index of the class value it is intended for.  

4.6.4 Output Training Raster 

The output name for the training raster.  By default, this is saved to the “model” folder as 

“train.tif”. This raster must be in TIFF format. 

4.6.5 Output Testing Raster 

The output name for the testing raster. By default, this is saved to the “model” folder as “test.tif”. 

This raster must be in TIFF format. 

4.6.6 Training Sampling Area Constraint (Optional) 

This raster should be of Boolean type (integer, 1’s and 0’s), where the True values indicate the 

areas where the tool should sample training data from. This raster must match the extents of the 

ground truth raster. 
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4.7 Train Random Trees 

This tool executes the training phase of the Random Trees algorithm. In this phase, the algorithm 

takes bootstrap samples of the training dataset, including the labeled cells in the training raster 

and the predictor variables. A decision tree is created from each bootstrap sample, and all are 

used to learn the indicators of the ground truth classes based on information from the predictor 

variables.  

4.7.1 Input Training Raster 

Raster containing the ground truth labels for cells. This should be a subset of the ground truth 

data. This raster must be in TIFF format. 

4.7.2 Input Predictor Variables Raster 

One or more rasters containing the predictor variable information, which are intended to 

differentiate between ground truth classes.  

4.7.3 Output Trained Model 

The output name for the trained Random Trees model. This is auto filled to retain the base name 

of the training raster used to create the model. By default, this is saved to the “model” folder. 

The trained model must be in JOBLIB format. 

4.7.4 Prepared Predictor Variable Raster 

The output name for the prepared predictor variable raster. If more than one raster is passed to 

the Input Predictor Variables Raster parameter, this output name corresponds to a composite of 

all predictor variables. If only one predictor variable is passed, this output name corresponds to a 

copy of the input predictor variable, and this raster can be disregarded. This is auto-filled as 

“composite.tif” and saved to the “predictor_variables” folder. 

4.7.5 Output Variable Importance 

The output name for the variable importance file. This is auto filled to retain the base name of 

the training raster used to create the model. By default, this is saved to the “model” folder. This 

file must be in TXT format. 
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4.7.6 Number of Trees (Optional) 

Input number of decision trees to grow in the Random Trees model. If this parameter is left blank 

or unaltered, a default value of 100 is used. 

4.7.7 Maximum Tree Depth (Optional) 

The maximum depth of each tree in the Random Trees model. If this parameter is left blank or 

unaltered, a default value of “None” will be used. The value of None will result in decision tree 

nodes being expanded until all leaves are pure. 

4.7.8 Maximum Number of Features (Optional) 

The maximum number of features that are considered when a decision tree node is split. If this 

parameter is left blank or unaltered, a default value of “auto” will be used. The value of “auto” 

will set the max features number to be the square root of the number of features.  

4.7.9 Class Weights (Optional) 

The weight to assign to each class when calculating the penalty for misclassifying that class 

during training. This parameter is entered as a value table where column 0 is the class value and 

column 1 is the weight for that class. If left blank or unaltered, a default value of “balanced” is 

used. The value “balanced” automatically adjusts class weights to be inversely proportional to 

class frequencies in the training dataset. 
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4.8 Run Random Trees 

This tool uses the trained Random Trees model to predict the class for the cells of the input 

predictor variables. Predictions do not need to be made in the same area for which the model was 

trained, but the calculation of the predictor variable(s) must be the same. In this case, a model 

can be trained using the DTW, Curvature, and TWI for one area and used to make predictions for 

a new area, if DTW, Curvature, and TWI have also been derived and are used as inputs  

4.8.1 Input Predictor Variables Raster 

Raster containing the predictor variables that will be used by the model to differentiate between 

classes. These predictor variables must match those that were used to train the model. If a 

composite of input predictor variables was created from the Train Random Trees tool, the output 

Prepared Predictor Variables Raster must be used here. If only one predictor variable was used to 

train the model, that same raster must be used here. This raster must be in TIFF format. 

4.8.2 Input Trained Model 

The trained model resulting from running the Train Random Trees tool. This model was trained 

using the same set of predictor variables present in the Input Predictor Variables Raster. The 

trained model must be in JOBLIB format. 

4.8.3 Output Prediction Raster 

The output name for the prediction raster, where each cell has been assigned a predicted class 

based on the input predictor variables raster. This is auto filled to retain the base name of the 

trained model. By default, this is saved to the “outputs” folder. This raster must be in TIFF 

format. 

4.8.4 Save Probability Rasters 

Boolean option to save probability rasters. If True, a raster is created for each target class and 

saved to the “outputs folder.” The rasters are saved with the pattern:  

“[trained model base name]_proba[class value].tif”.  
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4.9 Assess Accuracy 

Given the predicted output from the preceding step and a corresponding raster with ground truth 

labels for the cells (i.e., the testing raster), this tool generates accuracy metrics that summarize 

the model’s ability to predict wetlands and nonwetlands. Additional metrics are generated if the 

user includes class probability rasters. Accuracy metrics were chosen to avoid misleading 

assessments of imbalanced ground truth classes, which is typical of wetland/nonwetland 

distributions. 

4.9.1 Input Testing Raster 

Raster containing the ground truth labels for cells. This should be a subset of the ground truth 

data that was NOT used for training, intended to be the testing raster output from the Train Test 

Split tool. The location of the non-null cells of this raster dictates where the accuracy metrics are 

calculated for. This raster must be in TIFF format. 

4.9.2 Input Prediction Raster 

Raster containing the class predictions generated by the Random Trees model, i.e., the output of 

Run Random Trees. If this raster does not have the same extents and number of cells as the input 

testing raster, the tool will fail. Ensure that both rasters were created from the same origin rasters 

and in the same projections. This raster must be in TIFF format.  

4.9.3 Output Metrics Directory 

The output name for the directory where accuracy metrics will be stored. This is auto filled to 

retain the base name of the trained model and located at the same directory level as “Layers”.  

4.9.4 Optional Accuracy Outputs (Optional) 

An optional value table to enter the file path to probability rasters (column 1) and the class value 

that they correspond to (column 0). If inputs are passed, additional precision-recall curves will be 

calculated for these rasters and saved to the output metrics directory. By default, the precision-

recall curve(s) will be saved to PNG format with the pattern: “prec_rec_curve_[class value].” 
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